Adoption of Machine Learning Techniques in Ecology and Earth Science

The natural sciences, such as ecology and earth science, study complex interactions between biotic and abiotic systems in order to infer understanding and make predictions. Machine-learning-based methods have an advantage over traditional statistical methods in studying these systems because the former do not impose unrealistic assumptions (such as linearity), are capable of inferring missing data, and can reduce long-term expert annotation burden. Thus, a wider adoption of machine learning methods in ecology and earth science has the potential to greatly accelerate the pace and quality of science. Despite these advantages, machine learning techniques have not had wide spread adoption in ecology and earth science. This is largely due to 1) a lack of communication and collaboration between the machine learning research community and natural scientists, 2) a lack of easily accessible tools and services, and 3) the requirement for a robust training and test data set. These impediments can be overcome through financial support for collaborative work and the development of tools and services facilitating ML use. Natural scientists who have not yet used machine learning methods can be introduced to these techniques through Random Forest, a method that is easy to implement and performs well. This manuscript will 1) briefly describe several popular ML methods and their application to ecology and earth science, 2) discuss why ML methods are underutilized in natural science, and 3) propose solutions for barriers preventing wider ML adoption.

[1]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[2]  Hugo Jair Escalante,et al.  A Comparison of Outlier Detection Algorithms for Machine Learning , 2005 .

[3]  Caren Marzban,et al.  Neural Networks for Postprocessing Model Output: ARPS , 2003 .

[4]  Yong Pang,et al.  Characterizing forest canopy structure with lidar composite metrics and machine learning , 2011 .

[5]  C. Wunsch,et al.  ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation , 2015 .

[6]  Mike Kangas R: A Computational and Graphics Resource for Ecologists , 2004 .

[7]  Carlos Fonseca,et al.  Classification success of six machine learning algorithms in radar ornithology , 2016 .

[8]  Sovan Lek,et al.  Stochastic models that predict trout population density or biomass on a mesohabitat scale , 1996, Hydrobiologia.

[9]  George S. Young,et al.  Implementing a Neural Network Emulation of a Satellite Retrieval Algorithm , 2009 .

[10]  J Elith,et al.  A working guide to boosted regression trees. , 2008, The Journal of animal ecology.

[11]  Anne E. Thessen,et al.  Data issues in the life sciences , 2011, ZooKeys.

[12]  Bhawani Sankar Panda,et al.  A Study of Incomplete Data - A Review , 2013, FICTA.

[13]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[14]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[15]  David R. B. Stockwell,et al.  Induction of sets of rules from animal distribution data: a robust and informative method of data analysis , 1992 .

[16]  William W. Hsieh,et al.  An Adaptive Nonlinear MOS Scheme for Precipitation Forecasts Using Neural Networks , 2003 .

[17]  Leonardo Franco,et al.  Missing data imputation using statistical and machine learning methods in a real breast cancer problem , 2010, Artif. Intell. Medicine.

[18]  Sovan Lek,et al.  Abundance, diversity, and structure of freshwater invertebrates and fish communities: An artificial neural network approach , 2001 .

[19]  Alan H. Fielding,et al.  An introduction to machine learning methods , 1999 .

[20]  James W. Haefner,et al.  Modeling Biological Systems , 1996, Springer US.

[21]  Alfred Schultz,et al.  Neural networks in agroecological modelling - stylish application or helpful tool? , 2000 .

[22]  M. Pal,et al.  Random forests for land cover classification , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[23]  Anne E. Thessen,et al.  A statistical assessment of population trends for data deficient Mexican amphibians , 2014, PeerJ.

[24]  David Martens,et al.  Including high-cardinality attributes in predictive models: A case study in churn prediction in the energy sector , 2015, Decis. Support Syst..

[25]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[26]  William W. Hsieh,et al.  Neural network forecasts of the tropical Pacific sea surface temperatures , 2006, Neural Networks.

[27]  Sotiris B. Kotsiantis,et al.  Supervised Machine Learning: A Review of Classification Techniques , 2007, Informatica.

[28]  C. Orme,et al.  Predicting the conservation status of data‐deficient species , 2015, Conservation biology : the journal of the Society for Conservation Biology.

[29]  Haoyu Yang,et al.  Application of machine learning methods in bioinformatics , 2018 .

[30]  William W. Hsieh Machine Learning Methods in the Environmental Sciences: Contents , 2009 .

[31]  M. Scardi Artificial neural networks as empirical models for estimating phytoplankton production , 1996 .

[32]  Michele Scardi,et al.  Developing an empirical model of phytoplankton primary production: a neural network case study , 1999 .

[33]  Thomas J. Webb,et al.  Biodiversity's Big Wet Secret: The Global Distribution of Marine Biological Records Reveals Chronic Under-Exploration of the Deep Pelagic Ocean , 2010, PloS one.

[34]  F. Recknagel ANNA – Artificial Neural Network model for predicting species abundance and succession of blue-green algae , 1997, Hydrobiologia.

[35]  Lynne Boddy,et al.  Artificial neural networks for pattern recognition , 1999 .

[36]  Sovan Lek,et al.  Artificial Neuronal Networks: Application To Ecology And Evolution , 2012 .

[37]  Nathalie Japkowicz,et al.  The class imbalance problem: A systematic study , 2002, Intell. Data Anal..

[38]  Marc G. Genton,et al.  Classes of Kernels for Machine Learning: A Statistics Perspective , 2002, J. Mach. Learn. Res..

[39]  David Chesmore,et al.  Automated bioacoustic identification of species. , 2004, Anais da Academia Brasileira de Ciencias.

[40]  W. Thuiller BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change , 2003 .

[41]  Seppo Ilmari Fagerlund,et al.  Bird Species Recognition Using Support Vector Machines , 2007, EURASIP J. Adv. Signal Process..

[42]  András Bárdossy,et al.  Fuzzy classification of microbial biomass and enzyme activities in grassland soils , 2007 .

[43]  Christine A. Ribic,et al.  The relationships of seabird assemblages to physical habitat features in Pacific equatorial waters during spring 1984-1991 , 1997 .

[44]  Wei-Yin Loh,et al.  A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms , 2000, Machine Learning.

[45]  Peter A. Whigham,et al.  Comparative application of artificial neural networks and genetic algorithms for multivariate time-series modelling of algal blooms in freshwater lakes , 2002 .

[46]  Fred E. Smeins,et al.  Predicting grassland community changes with an artificial neural network model , 1996 .

[47]  John N. R. Jeffers Genetic Algorithms I , 1999 .

[48]  I. Dimopoulos,et al.  Role of some environmental variables in trout abundance models using neural networks , 1996 .

[49]  N. Macleod,et al.  Automated Taxon Identification in Systematics : Theory, Approaches and Applications , 2007 .

[50]  Maumita Bhattacharya,et al.  Machine Learning for Bioclimatic Modelling , 2013, ArXiv.

[51]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[52]  A. Prasad,et al.  Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction , 2006, Ecosystems.

[53]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[54]  Sašo DŲeroski,et al.  Machine Learning Applications in Habitat Suitability Modeling , 2009 .

[55]  Robert J. Olson,et al.  Automated taxonomic classification of phytoplankton sampled with imaging‐in‐flow cytometry , 2007 .

[56]  J. Drake,et al.  Modelling ecological niches with support vector machines , 2006 .

[57]  Johannes Fürnkranz,et al.  Rule Learning in a Nutshell , 2012 .

[58]  John Bell,et al.  Tree-based methods , 1999 .

[59]  C. Meynard,et al.  Predicting species distributions: a critical comparison of the most common statistical models using artificial species , 2007 .

[60]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Comparing machine learning classifiers in potential distribution modelling , 2011, Expert Syst. Appl..

[61]  Antonello Pasini,et al.  Neural Network Modeling in Climate Change Studies , 2009 .

[62]  Anil K. Jain Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..

[63]  Diana Liverman,et al.  Intraseasonal Variability Associated with Wet Monsoons in Southeast Arizona , 2002 .

[64]  Alan H. Fielding,et al.  Cluster and Classification Techniques for the Biosciences , 2006 .

[65]  S Lek,et al.  Classifying individuals among infra-specific taxa using microsatellite data and neural networks. , 1996, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[66]  P. Culverhouse,et al.  Do experts make mistakes? A comparison of human and machine identification of dinoflagellates , 2003 .

[67]  Andrej Kobler,et al.  Identifying brown bear habitat by a combined GIS and machine learning method. , 2000 .

[68]  Ding-Geng Chen,et al.  A fuzzy logic model with genetic algorithm for analyzing fish stock-recruitment relationships , 2000 .

[69]  Nitin Muttil,et al.  Genetic programming for analysis and real-time prediction of coastal algal blooms , 2005 .

[70]  Cesare Furlanello,et al.  GIS and the Random Forest Predictor: Integration in R for Tick-Borne Disease Risk Assessment , 2003 .

[71]  G. Wahba,et al.  Multicategory Support Vector Machines , Theory , and Application to the Classification of Microarray Data and Satellite Radiance Data , 2004 .

[72]  Sotiris B. Kotsiantis,et al.  Machine learning: a review of classification and combining techniques , 2006, Artificial Intelligence Review.

[73]  Jungho Im,et al.  ISPRS Journal of Photogrammetry and Remote Sensing , 2022 .

[74]  Ralf Wieland,et al.  Adaptive fuzzy modeling versus artificial neural networks , 2008, Environ. Model. Softw..

[75]  David R. B. Stockwell,et al.  Genetic Algorithms II , 1999 .

[76]  Thomas Brey,et al.  Artificial neural network versus multiple linear regression: predicting P/B ratios from empirical data , 1996 .

[77]  B. Pradhan Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling , 2011, Environmental and Ecological Statistics.

[78]  Sovan Lek,et al.  Artificial neural networks as a tool in ecological modelling, an introduction , 1999 .

[79]  Sue Ellen Haupt,et al.  Environmental Optimization: Applications of Genetic Algorithms , 2009 .

[80]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001, Statistical Science.

[81]  Benoît Stoll,et al.  Support vector machines to map rare and endangered native plants in Pacific islands forests , 2012, Ecol. Informatics.

[82]  Sovan Lek,et al.  Energy availability and habitat heterogeneity predict global riverine fish diversity , 1998, Nature.

[83]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[84]  Stuart Parsons,et al.  Acoustic identification of 12 species of echolocating bat by discriminant function analysis and artificial neural networks , 2000 .

[85]  Jin Li,et al.  Application of machine learning methods to spatial interpolation of environmental variables , 2011, Environ. Model. Softw..

[86]  J. Peters,et al.  Random forests as a tool for ecohydrological distribution modelling , 2007 .

[87]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[88]  Leszek Plaskota,et al.  Information complexity of neural networks , 2000, Neural Networks.

[89]  P. Laplace Memoir on the Probability of the Causes of Events , 1986 .

[90]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001 .

[91]  R. Plant,et al.  Classification trees: An alternative non‐parametric approach for predicting species distributions , 2000 .

[92]  Pineda,et al.  Generalization of back-propagation to recurrent neural networks. , 1987, Physical review letters.

[93]  W. Sutherland,et al.  The need for evidence-based conservation. , 2004, Trends in ecology & evolution.

[94]  James H. Thorne,et al.  PREDICTING OCCURRENCES AND IMPACTS OF SMALLMOUTH BASS INTRODUCTIONS IN NORTH TEMPERATE LAKES , 2004 .

[95]  Anders Knudby,et al.  New approaches to modelling fish―habitat relationships , 2010 .

[96]  Colin R. Reeves,et al.  Genetic Algorithms—Principles and Perspectives , 2002, Operations Research/Computer Science Interfaces Series.

[97]  Sašo Džeroski,et al.  Applications of symbolic machine learning to ecological modelling , 2001 .

[98]  D. R. Morse,et al.  Expert systems: frames, rules or logic for species identification? , 1987, Comput. Appl. Biosci..

[99]  A. Mulligan,et al.  Genetic Algorithms for Calibrating Water Quality Models , 1998 .

[100]  Jane Elith,et al.  What do we gain from simplicity versus complexity in species distribution models , 2014 .

[101]  C. W. Morris,et al.  Neural network analysis of flow cytometric data for 40 marine phytoplankton species. , 1994, Cytometry.

[102]  Tae-Soo Chon,et al.  Biologically-inspired machine learning implemented to ecological informatics ☆ , 2007 .

[103]  Alan Fielding,et al.  Analysing Extinction Risk in Parrots using Decision Trees , 2006, Biodiversity & Conservation.

[104]  A. Brenning,et al.  Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. , 2010 .

[105]  Maggi Kelly,et al.  Support vector machines for predicting distribution of Sudden Oak Death in California , 2005 .

[106]  Kiri Wagstaff,et al.  Machine Learning that Matters , 2012, ICML.

[107]  J. Giske,et al.  Modelling spatial dynamics of fish , 2004, Reviews in Fish Biology and Fisheries.

[108]  Stefan B. Williams,et al.  Australian sea-floor survey data, with images and expert annotations , 2015, Scientific Data.

[109]  Alex A. Freitas,et al.  Discovering comprehensible classification rules with a genetic algorithm , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[110]  Friedrich Recknagel,et al.  Applications of machine learning to ecological modelling , 2001 .

[111]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[112]  D. White,et al.  Predicting climate‐induced range shifts: model differences and model reliability , 2006 .

[113]  Joydeep Ghosh,et al.  Investigation of the random forest framework for classification of hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[114]  V. G. Sigillito,et al.  Classifying soil structure using neural networks , 1996 .

[115]  Xueqiao Huang,et al.  A Machine-Learning Approach to Automated Knowledge-Base Building for Remote Sensing Image Analysis with GIs Data , 1997 .

[116]  A. Peterson,et al.  Niche Modeling and Geographic Range Predictions in the Marine Environment Using a Machine-learning Algorithm , 2003 .

[117]  Foster J. Provost,et al.  Handling Missing Values when Applying Classification Models , 2007, J. Mach. Learn. Res..

[118]  M. O. Tokhi,et al.  Training neural networks: backpropagation vs. genetic algorithms , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[119]  M. J. Hatcher,et al.  Modeling Biological Systems: Principles and Applications , 1997 .

[120]  Douglas M. Hawkins,et al.  The Problem of Overfitting , 2004, J. Chem. Inf. Model..

[121]  Ralf Wieland,et al.  Application of machine learning techniques to the analysis of soil ecological data bases: relationships between habitat features and Collembolan community characteristics , 2000 .

[122]  Dennis P. Swaney,et al.  Coastal typology: An integrative “neutral” technique for coastal zone characterization and analysis , 2008 .

[123]  A. Semtner Modeling Ocean Circulation , 1995, Science.

[124]  S. Manel,et al.  Alternative methods for predicting species distribution: an illustration with Himalayan river birds , 1999 .

[125]  S. Džeroski,et al.  Habitat suitability modelling for red deer (Cervus elaphus L.) in South-central Slovenia with classification trees , 2001 .

[126]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[127]  S. Lek,et al.  The use of artificial neural networks to predict the presence of small‐bodied fish in a river , 1997 .

[128]  Robert I. McKay Variants of genetic programming for species distribution modelling — fitness sharing, partial functions, population evaluation , 2001 .

[129]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[130]  Stephen Muggleton,et al.  Inverse entailment and progol , 1995, New Generation Computing.

[131]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[132]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[133]  Ralf Wieland,et al.  Classification in conservation biology: A comparison of five machine-learning methods , 2010, Ecol. Informatics.

[134]  Pierre Azoulay,et al.  Does Science Advance One Funeral at a Time? , 2015, The American economic review.

[135]  Nello Cristianini,et al.  Controlling the Sensitivity of Support Vector Machines , 1999 .

[136]  P. Atkinson,et al.  Introduction Neural networks in remote sensing , 1997 .

[137]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[138]  Can Ozan Tan,et al.  Methodological issues in building, training, and testing artificial neural networks in ecological applications , 2005, q-bio/0510017.

[139]  Héctor Corrada Bravo,et al.  Automated classification of bird and amphibian calls using machine learning: A comparison of methods , 2009, Ecol. Informatics.

[140]  G. De’ath,et al.  CLASSIFICATION AND REGRESSION TREES: A POWERFUL YET SIMPLE TECHNIQUE FOR ECOLOGICAL DATA ANALYSIS , 2000 .

[141]  J. Simmonds,et al.  Species identification using wideband backscatter with neural network and discriminant analysis , 1996 .

[142]  Jennifer A. Miller,et al.  Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence , 2002 .

[143]  Steven E. Franklin,et al.  A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery , 2012 .

[144]  G. De’ath Boosted trees for ecological modeling and prediction. , 2007, Ecology.

[145]  F. Kienast,et al.  A simulated map of the potential natural forest vegetation of Switzerland , 1993 .

[146]  C. Furlanello,et al.  Predicting habitat suitability with machine learning models: The potential area of Pinus sylvestris L. in the Iberian Peninsula , 2006 .

[147]  B. J. Bailey,et al.  Neural Network Models of the Greenhouse Climate , 1994 .

[148]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[149]  Takashi Yoneyama,et al.  Specification of Training Sets and the Number of Hidden Neurons for Multilayer Perceptrons , 2001, Neural Computation.

[150]  Elizabeth W. North,et al.  Evaluating and improving a semi‐automated image analysis technique for identifying bivalve larvae , 2014 .

[151]  Peter Goethals,et al.  Optimization of Artificial Neural Network (ANN) model design for prediction of macroinvertebrates in the Zwalm river basin (Flanders, Belgium) , 2004 .

[152]  Ke-Lin Du,et al.  Clustering: A neural network approach , 2010, Neural Networks.

[153]  Scott Ellis,et al.  Fuzzy Logic Applications , 2009 .

[154]  Christine M. Anderson-Cook Practical Genetic Algorithms (2nd ed.) , 2005 .

[155]  S. Popescu,et al.  Bayesian Learning with Gaussian Processes for Supervised Classification of Hyperspectral Data , 2008 .

[156]  James E. McKenna,et al.  Application of Neural Networks to Prediction of Fish Diversity and Salmonid Production in the Lake Ontario Basin , 2005 .

[157]  D. R. Cutler,et al.  Utah State University From the SelectedWorks of , 2017 .

[158]  S. Lek,et al.  Individuality in the groans of fallow deer ( Dama dama ) bucks , 1998 .

[159]  Eve McDonald-Madden,et al.  Predicting species distributions for conservation decisions , 2013, Ecology letters.

[160]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[161]  Vladimir M. Krasnopolsky,et al.  Neural Network Applications to Solve Forward and Inverse Problems in Atmospheric and Oceanic Satellite Remote Sensing , 2009 .

[162]  Stephen Muggleton,et al.  14 CARCINOGENESIS PREDICTIONS , 1997 .

[163]  H. W. Balfoort,et al.  Automatic identification of algae: neural network analysis of flow cytometric data , 1992 .

[164]  Holger R. Maier,et al.  Neural networks for the prediction and forecasting of water resource variables: a review of modelling issues and applications , 2000, Environ. Model. Softw..

[165]  Nitesh V. Chawla,et al.  Data Mining for Imbalanced Datasets: An Overview , 2005, The Data Mining and Knowledge Discovery Handbook.

[166]  David W. Armitage,et al.  A comparison of supervised learning techniques in the classification of bat echolocation calls , 2010, Ecol. Informatics.

[167]  M RuckB,et al.  Biological classification of river water quality using neural networks. , 1993 .

[168]  Young-Seuk Park,et al.  Patternizing communities by using an artificial neural network , 1996 .

[169]  David R. B. Stockwell,et al.  Future projections for Mexican faunas under global climate change scenarios , 2002, Nature.

[170]  Daniele Micci-Barreca,et al.  A preprocessing scheme for high-cardinality categorical attributes in classification and prediction problems , 2001, SKDD.

[171]  Keith C. Norris,et al.  A test of a pattern recognition system for identification of spiders , 1999 .

[172]  Wei-Yin Loh,et al.  Fifty Years of Classification and Regression Trees , 2014 .

[173]  Jangho Lee,et al.  Classification of breeding bird communities along an urbanization gradient using an unsupervised artificial neural network , 2007 .

[174]  Saso Dzeroski,et al.  Experiments in Predicting Biodegradability , 1999, ILP.

[175]  Sašo Džeroski,et al.  Biological Monitoring: a Comparison between Bayesian, Neural and Machine Learning Methods of Water Quality Classification. , 1996 .

[176]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[177]  Jarl G Iske,et al.  Modelling spatial dynamics of fish , 1998 .

[178]  Brian G. Lees,et al.  Decision-tree and rule-induction approach to integration of remotely sensed and GIS data in mapping vegetation in disturbed or hilly environments , 1991 .

[179]  W. J. Walley,et al.  Self-Organising Maps for the Classification and Diagnosis of River Quality from Biological and Environmental Data , 1999, ISESS.

[180]  Brunello Tirozzi,et al.  Linear and nonlinear post-processing of numerically forecasted surface temperature , 2003 .

[181]  Valliappa Lakshmanan Automated Analysis of Spatial Grids , 2009 .

[182]  Hamid H. Jebur,et al.  Machine Learning Techniques for Anomaly Detection: An Overview , 2013 .

[183]  I. Dimopoulos,et al.  Application of neural networks to modelling nonlinear relationships in ecology , 1996 .

[184]  Stanley V. Gregory,et al.  Ecological uses for genetic algorithms: predicting fish distributions in complex physical habitats , 1995 .

[185]  Susan P. Worner,et al.  Modelling global insect pest species assemblages to determine risk of invasion , 2006 .

[186]  D. R. Cutler,et al.  MODEL-BASED STRATIFICATIONS FOR ENHANCING THE DETECTION OF RARE ECOLOGICAL EVENTS , 2005 .

[187]  S. Parsons,et al.  Human vs. machine : identification of bat species from their echolocation calls by humans and by artificial neural networks , 2008 .

[188]  M. Termansen,et al.  The use of genetic algorithms and Bayesian classification to model species distributions , 2006 .

[189]  Johannes Fürnkranz,et al.  Foundations of Rule Learning , 2012, Cognitive Technologies.

[190]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[191]  B. Henderson,et al.  Australia-wide predictions of soil properties using decision trees , 2005 .

[192]  Paul H. Williams,et al.  Biodiversity conservation planning tools , 2006 .

[193]  Janet Franklin,et al.  Mapping land-cover modifications over large areas: A comparison of machine learning algorithms , 2008 .

[194]  Jennifer A. Miller,et al.  Mapping landcover modifications over large areas : A comparison of machine learning algorithms , 2008 .

[195]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory, Third Edition , 1989, Springer Series in Information Sciences.

[196]  M. Araújo,et al.  An evaluation of methods for modelling species distributions , 2004 .

[197]  Sue Ellen Haupt,et al.  Artificial Intelligence Methods in the Environmental Sciences , 2008 .

[198]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[199]  Hava T. Siegelmann,et al.  Support Vector Clustering , 2002, J. Mach. Learn. Res..

[200]  Philip K. McKinley,et al.  Ensemble extraction for classification and detection of bird species , 2010, Ecol. Informatics.

[201]  Sovan Lek,et al.  Artificial Neuronal Networks , 2000 .

[202]  Bernadette Bouchon-Meunier,et al.  Real world fuzzy logic applications in data mining and information retrieval , 2007 .

[203]  Julian D Olden,et al.  Machine Learning Methods Without Tears: A Primer for Ecologists , 2008, The Quarterly Review of Biology.

[204]  Stephen Muggleton,et al.  Carcinogenesis Predictions Using Inductive Logic Programming , 1997 .

[205]  Javier M. Moguerza,et al.  Support Vector Machines with Applications , 2006, math/0612817.

[206]  Andy Liaw,et al.  New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than Regression Tree Analysis. , 2004 .

[207]  W. Thuiller,et al.  Predicting species distribution: offering more than simple habitat models. , 2005, Ecology letters.

[208]  Sue Ellen Haupt,et al.  Addressing Air Quality Problems with Genetic Algorithms: A Detailed Analysis of Source Characterization , 2009 .

[209]  S. Durbha,et al.  Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer , 2007 .

[210]  A. Peterson,et al.  Niche Modeling Perspective on Geographic Range Predictions in the Marine Environment Using a Machine-learning Algorithm , 2003 .

[211]  David R. B. Stockwell,et al.  The GARP modelling system: problems and solutions to automated spatial prediction , 1999, Int. J. Geogr. Inf. Sci..

[212]  S. Sathiya Keerthi,et al.  Convergence of a Generalized SMO Algorithm for SVM Classifier Design , 2002, Machine Learning.

[213]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[214]  Dragan Gamberger,et al.  Application of Artificial Intelligence in Biodegradation Modelling , 1996 .

[215]  Terry L. Kastens,et al.  Feedforward Backpropagation Neural Networks in Prediction of Farmer Risk Preferences , 1996 .

[216]  R. Mike Cameron-Jones,et al.  Induction of logic programs: FOIL and related systems , 1995, New Generation Computing.

[217]  S. Lek,et al.  Environmental impact prediction using neural network modelling. An example in wildlife damage , 1999 .

[218]  B. G. Lees,et al.  THE APPLICATION OF NEURAL NETWORKS TO THE FLORISTIC CLASSIFICATION OF REMOTE SENSING AND GIS DATA IN COMPLEX TERRAIN , 2010 .

[219]  Haiming Lu,et al.  Hierarchical genetic algorithm based neural network design , 2000, 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (Cat. No.00.