Three schemes of remote information concentration based on ancilla-free phase-covariant telecloning

In this paper, remote information concentration is investigated which is the reverse process of the $$1\rightarrow 3$$1→3 optimal asymmetric economical phase-covariant telecloning (OAEPCT). The OAEPCT is different from the reverse process of optimal universal telecloning. It is shown that the quantum information via $$1\rightarrow 3$$1→3 OAEPCT procedure can be remotely concentrated back to a single qubit with a certain probability via several quantum channels. In these schemes, we adopt Bell measurement to measure the joint systems and use projected measurement and positive operator-valued measure to recover the original quantum state. The results shows non-maximally entangled quantum resource can be applied to information concentration.

[1]  Lin Xiu-min,et al.  Preparation of n-Atom GHZ State and Implementation of Quantum-State Transfer via Cavity Decay , 2008 .

[2]  Iulia Ghiu Asymmetric quantum telecloning of d-level systems and broadcasting of entanglement to different locations using the many-to-many communication protocol , 2003 .

[3]  S. Olmschenk,et al.  Quantum Teleportation Between Distant Matter Qubits , 2009, Science.

[4]  Siendong Huang,et al.  Remote state preparation using positive operator-valued measures , 2013 .

[5]  Hoi-Kwong Lo,et al.  Multi-partite quantum cryptographic protocols with noisy GHZ States , 2007, Quantum Inf. Comput..

[6]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[7]  Zhan Zhi-ming,et al.  Schemes for Generating Cluster States via Cavity Systems , 2009 .

[8]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[9]  Tal Mor,et al.  Teleportation via generalized measurements, and conclusive teleportation , 1999 .

[10]  A. Hayashi,et al.  Remote state preparation without oblivious conditions , 2002, quant-ph/0205009.

[11]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[12]  Zhang-Yin Wang,et al.  Symmetric Remote Single-Qubit State Preparation via Positive Operator-Valued Measurement , 2010 .

[13]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[14]  Vlatko Vedral,et al.  Basics of quantum computation , 1998, quant-ph/9802065.

[15]  M. Murao,et al.  Remote information concentration using a bound entangled state. , 2000, Physical review letters.

[16]  S. E. Ahnert,et al.  All possible bipartite positive-operator-value measurements of two-photon polarization states (5 pages) , 2006 .

[17]  Jin-Ming Liu,et al.  Remote preparation of arbitrary two- and three-qubit states , 2009 .

[18]  Frank Jiang,et al.  Deterministic joint remote preparation of arbitrary multi-qudit states , 2013 .

[19]  C. Helstrom Quantum detection and estimation theory , 1969 .

[20]  Yixian Yang,et al.  Joint Remote Preparation of an Arbitrary Three-Qubit State with Mixed Resources , 2010, International Journal of Theoretical Physics.

[21]  TelePOVM -- New Faces of Teleportation , 1996, quant-ph/9608005.

[22]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[23]  Wang Xin-wen,et al.  One-to-Many Economical Phase-Covariant Cloning and Telecloning of Qudits , 2010 .

[24]  V. Scarani,et al.  Quantum cloning , 2005, quant-ph/0511088.

[25]  I. D. Ivanović How to differentiate between non-orthogonal states , 1987 .

[26]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[27]  Fang Mao-Fa,et al.  Preparation of the four-qubit cluster states in cavity QED and the trapped-ion system , 2010 .

[28]  P. Horodecki,et al.  Generalized Smolin states and their properties , 2006 .

[29]  Vlatko Vedral,et al.  Quantum-information distribution via entanglement , 1999, quant-ph/9909031.

[30]  Zhi-Wen Mo,et al.  Joint Remote Preparation of an Arbitrary Five-Qubit Brown State , 2013 .

[31]  Broadcasting of entanglement at a distance using linear optics and telecloning of entanglement , 2005, quant-ph/0510143.

[32]  Guo-Jian Yang,et al.  Hybrid economical telecloning of equatorial qubits and generation of multipartite entanglement , 2009 .

[33]  Ming-huang Sang,et al.  Quantum state sharing of an arbitrary three-qubit state by using three sets of W-class states , 2011, Quantum Information Processing.

[34]  Mingsheng Zhan,et al.  Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state , 2003 .

[35]  Ping Zhou,et al.  Joint remote preparation of an arbitrary m-qudit state with a pure entangled quantum channel via positive operator-valued measurement , 2012 .

[36]  Jie Wu,et al.  Symmetric and Probabilistic Quantum State Sharing via Positive Operator-valued Measure , 2010 .

[37]  S. E. Ahnert,et al.  General implementation of all possible positive-operator-value measurements of single-photon polarization states , 2005 .

[38]  D. Dieks Overlap and distinguishability of quantum states , 1988 .

[39]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[41]  E. Knill,et al.  Experimental purification of two-atom entanglement , 2006, Nature.

[42]  叶柳,et al.  Scheme to implement optimal asymmetric economical 1→3 phase-covariant telecloning via cavity QED , 2010 .

[43]  Lin Chen,et al.  Asymmetric quantum telecloning of multiqubit states , 2007, Quantum Inf. Comput..

[44]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[45]  Zhang Xiao-gui,et al.  Remote Information Concentration via a Four-Particle Cluster State , 2009 .

[46]  Lucien Hardy,et al.  Cloning and quantum computation , 2000 .

[47]  Yafei Yu,et al.  Entangled States Used in Remote Information Concentration and Their Properties , 2006 .

[48]  Zhang-Yin Wang,et al.  Controlled Remote Preparation of a Two-Qubit State via Positive Operator-Valued Measure and Two Three-Qubit Entanglements , 2011 .

[49]  C. Macchiavello,et al.  Reduced randomness in quantum cryptography with sequences of qubits encoded in the same basis , 2005, quant-ph/0507058.

[50]  Prasanta K. Panigrahi,et al.  Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states , 2009, 0906.4323.

[51]  Kui Hou,et al.  Joint remote preparation of an arbitrary two-qubit state via GHZ-type states , 2011 .

[52]  Quantum cloning and distributed measurements , 2000, quant-ph/0011073.

[53]  Buzek,et al.  Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[54]  N J Cerf,et al.  Separating the classical and quantum information via quantum cloning. , 2005, Physical review letters.

[55]  Yan Feng-li,et al.  Probabilistic Teleportation of an Unknown Two-Particle State with a Four-Particle Pure Entangled State and Positive Operator Valued Measure , 2006 .

[56]  D. Dieks Communication by EPR devices , 1982 .

[57]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .