Turing Pattern Formation Under Heterogeneous Distributions of Parameters for an Activator-Depleted Reaction Model

[1]  Andrew P. Bassom,et al.  Diffusion driven instability in an inhomogeneous circular domain , 1999 .

[2]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[3]  Anotida Madzvamuse,et al.  A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves , 2002, Bulletin of mathematical biology.

[5]  E. Sel'kov,et al.  Self-oscillations in glycolysis. 1. A simple kinetic model. , 1968, European journal of biochemistry.

[6]  P. Maini,et al.  Pattern formation in spatially heterogeneous Turing reaction–diffusion models , 2003 .

[7]  J. Schnakenberg,et al.  Simple chemical reaction systems with limit cycle behaviour. , 1979, Journal of theoretical biology.

[8]  Andrew L. Krause,et al.  From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ , 2019, Journal of the Royal Society Interface.

[9]  Václav Klika,et al.  History dependence and the continuum approximation breakdown: the impact of domain growth on Turing’s instability , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Anotida Madzvamuse,et al.  Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains , 2010, Journal of mathematical biology.

[11]  P. Maini,et al.  Complex pattern formation in reaction–diffusion systems with spatially varying parameters , 2005 .

[12]  Andrew L. Krause,et al.  Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems. , 2018, Physical review. E.

[13]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[14]  Diego Alexander Garzón-Alvarado,et al.  Computational examples of reaction–convection–diffusion equations solution under the influence of fluid flow: First example , 2012 .

[15]  M. Golinski,et al.  Mathematical Biology , 2005 .

[16]  Anotida Madzvamuse,et al.  Pigmentation pattern formation in butterflies: experiments and models. , 2003, Comptes rendus biologies.

[17]  P. Maini,et al.  Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients , 1992 .

[18]  A. Madzvamuse,et al.  Classification of parameter spaces for a reaction-diffusion model on stationary domains , 2017 .

[19]  D. A. Garzón-Alvarado,et al.  Patrones de Turing sobre superficies sometidas a deformación: un acercamiento desde el método lagrangiano total , 2012 .

[20]  J. Mantilla,et al.  Turing pattern formation for reaction–convection–diffusion systems in fixed domains submitted to toroidal velocity fields , 2011 .

[21]  Václav Klika,et al.  The Influence of Receptor-Mediated Interactions on Reaction-Diffusion Mechanisms of Cellular Self-organisation , 2012, Bulletin of mathematical biology.

[22]  Jianhua Wu,et al.  Steady state bifurcations for a glycolysis model in biochemical reaction , 2015 .