Turing Pattern Formation Under Heterogeneous Distributions of Parameters for an Activator-Depleted Reaction Model
暂无分享,去创建一个
Anotida Madzvamuse | D. A. Garzón-Alvarado | David Hernandez-Aristizabal | D. Garzón-Alvarado | A. Madzvamuse | David Hernandez–Aristizabal
[1] Andrew P. Bassom,et al. Diffusion driven instability in an inhomogeneous circular domain , 1999 .
[2] H. Meinhardt,et al. A theory of biological pattern formation , 1972, Kybernetik.
[3] Anotida Madzvamuse,et al. A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves , 2002, Bulletin of mathematical biology.
[5] E. Sel'kov,et al. Self-oscillations in glycolysis. 1. A simple kinetic model. , 1968, European journal of biochemistry.
[6] P. Maini,et al. Pattern formation in spatially heterogeneous Turing reaction–diffusion models , 2003 .
[7] J. Schnakenberg,et al. Simple chemical reaction systems with limit cycle behaviour. , 1979, Journal of theoretical biology.
[8] Andrew L. Krause,et al. From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ , 2019, Journal of the Royal Society Interface.
[9] Václav Klika,et al. History dependence and the continuum approximation breakdown: the impact of domain growth on Turing’s instability , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[10] Anotida Madzvamuse,et al. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains , 2010, Journal of mathematical biology.
[11] P. Maini,et al. Complex pattern formation in reaction–diffusion systems with spatially varying parameters , 2005 .
[12] Andrew L. Krause,et al. Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems. , 2018, Physical review. E.
[13] A. Turing. The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.
[14] Diego Alexander Garzón-Alvarado,et al. Computational examples of reaction–convection–diffusion equations solution under the influence of fluid flow: First example , 2012 .
[15] M. Golinski,et al. Mathematical Biology , 2005 .
[16] Anotida Madzvamuse,et al. Pigmentation pattern formation in butterflies: experiments and models. , 2003, Comptes rendus biologies.
[17] P. Maini,et al. Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients , 1992 .
[18] A. Madzvamuse,et al. Classification of parameter spaces for a reaction-diffusion model on stationary domains , 2017 .
[19] D. A. Garzón-Alvarado,et al. Patrones de Turing sobre superficies sometidas a deformación: un acercamiento desde el método lagrangiano total , 2012 .
[20] J. Mantilla,et al. Turing pattern formation for reaction–convection–diffusion systems in fixed domains submitted to toroidal velocity fields , 2011 .
[21] Václav Klika,et al. The Influence of Receptor-Mediated Interactions on Reaction-Diffusion Mechanisms of Cellular Self-organisation , 2012, Bulletin of mathematical biology.
[22] Jianhua Wu,et al. Steady state bifurcations for a glycolysis model in biochemical reaction , 2015 .