Reasoning about Cyclic Space: Axiomatic and Computational Aspects

In this paper we propose models of the axioms for linear and cyclic orders. First, we describe explicitly the relations between linear and cyclic models, from a logical point of view. The second part of the paper is concerned with qualitative constraints: we study the cyclic point algebra. This formalism is based on ternary relations which allow to express cyclic orientations. We give some results of complexity about the consistency problem in this formalism. The last part of the paper is devoted to conceptual spaces. The notion of a conceptual space is related to the complexity properties of temporal and spatial qualitative formalisms, including the cyclic point algebra.

[1]  Luis Fariñas del Cerro,et al.  A Tractable Subclass of the Block Algebra: Constraint Propagation and Preconvex Relations , 1999, EPIA.

[2]  Andrew U. Frank,et al.  Qualitative spatial reasoning about distances and directions in geographic space , 1992, J. Vis. Lang. Comput..

[3]  Luis Fariñas del Cerro,et al.  A New Tractable Subclass of the Rectangle Algebra , 1999, IJCAI.

[4]  Peter Gärdenfors,et al.  Conceptual spaces - the geometry of thought , 2000 .

[5]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[6]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[7]  Reinhard Moratz,et al.  Qualitative Spatial Reasoning about Line Segments , 2000, ECAI.

[8]  Christoph Schlieder,et al.  Reasoning About Ordering , 1995, COSIT.

[9]  Gérard Ligozat,et al.  On Generalized Interval Calculi , 1991, AAAI.

[10]  Gérard Ligozat,et al.  A New Proof of Tractability for ORD-Horn Relations , 1996, AAAI/IAAI, Vol. 1.

[11]  Gérard Ligozat,et al.  Tractable relations in temporal reasoning: pre-convex relations , 1994 .

[12]  Philippe Balbiani,et al.  A Model for Reasoning about Topologic Relations between cyclic intervals , 2000, KR.

[13]  Hiroshi Ishiguro,et al.  Acquisition of Qualitative Spatial Representation by Visual Observation , 1999, IJCAI.

[14]  Gérard Ligozat,et al.  Reasoning about Cardinal Directions , 1998, J. Vis. Lang. Comput..

[15]  Jean-François Condotta,et al.  Reasoning about generalized intervals: Horn representability and tractability , 2000, Proceedings Seventh International Workshop on Temporal Representation and Reasoning. TIME 2000.

[16]  Anthony G. Cohn,et al.  A new approach to cyclic ordering of 2D orientations using ternary relation algebras , 2000, Artif. Intell..

[17]  L. Sivik,et al.  Color naming: A mapping in the IMCS of common color terms , 1994 .

[18]  Gérard Ligozat,et al.  Weak Representations of Interval Algebras , 1990, AAAI.

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  Luis Fariñas del Cerro,et al.  A Model for Reasoning about Bidemsional Temporal Relations , 1998, KR.

[21]  Ralf Röhrig,et al.  Representation and Processing of Qualitative Orientation Knowledge , 1997, KI.

[22]  Jean-François Condotta,et al.  Spatial Reasoning About Points in a Multidimensional Setting , 2002, Applied Intelligence.

[23]  Gérard Ligozat “Corner” Relations in Allen's algebra , 2004, Constraints.

[24]  Gérard Ligozat Simple Models for Simple Calculi , 1999, COSIT.

[25]  R. McKenzie,et al.  The logic of time representation , 1987 .

[26]  C. H. Langford Some Theorems on Deducibility , 1926 .

[27]  Anders Hård,et al.  NCS—Natural Color System: A Swedish Standard for Color Notation , 1981 .