Induction of cardiac dysfunction in developing and adult zebrafish by chronic isoproterenol stimulation.

[1]  R. Fink,et al.  Essential light chain S195 phosphorylation is required for cardiac adaptation under physical stress. , 2016, Cardiovascular research.

[2]  A. Jaźwińska,et al.  Acute stress is detrimental to heart regeneration in zebrafish , 2016, Open Biology.

[3]  H. Katus,et al.  Advanced Echocardiography in Adult Zebrafish Reveals Delayed Recovery of Heart Function after Myocardial Cryoinjury , 2015, PloS one.

[4]  M. Caron,et al.  Overlapping and Opposing Functions of G Protein-coupled Receptor Kinase 2 (GRK2) and GRK5 during Heart Development* , 2014, The Journal of Biological Chemistry.

[5]  S. Royce,et al.  Serelaxin Is a More Efficacious Antifibrotic Than Enalapril in an Experimental Model of Heart Disease , 2014, Hypertension.

[6]  R. Peterson,et al.  The zebrafish as a tool to identify novel therapies for human cardiovascular disease , 2014, Disease Models & Mechanisms.

[7]  H. Calkins,et al.  Identification of a New Modulator of the Intercalated Disc in a Zebrafish Model of Arrhythmogenic Cardiomyopathy , 2014, Science Translational Medicine.

[8]  E. Stanley,et al.  CSF-1 receptor signaling in myeloid cells. , 2014, Cold Spring Harbor perspectives in biology.

[9]  A. Vickers,et al.  Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo. , 2014, Toxicology and applied pharmacology.

[10]  Leonard I Zon,et al.  Of fish and men: using zebrafish to fight human diseases. , 2013, Trends in cell biology.

[11]  M. Luo,et al.  Mechanisms of Altered Ca2+ Handling in Heart Failure , 2013, Circulation research.

[12]  P. Song,et al.  Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress , 2013, Apoptosis.

[13]  N. Frangogiannis,et al.  Fibroblasts in post-infarction inflammation and cardiac repair. , 2013, Biochimica et biophysica acta.

[14]  K. Poon,et al.  The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects , 2013, Global cardiology science & practice.

[15]  J. C. Belmonte,et al.  Isolation and in vitro culture of primary cardiomyocytes from adult zebrafish hearts , 2013, Nature Protocols.

[16]  J. Molkentin,et al.  Signaling effectors underlying pathologic growth and remodeling of the heart. , 2013, The Journal of clinical investigation.

[17]  Shuo Lin,et al.  Reverse genetic approaches in zebrafish. , 2012, Journal of genetics and genomics = Yi chuan xue bao.

[18]  L. Zon,et al.  Small molecule screening in zebrafish: swimming in potential drug therapies , 2012, Wiley interdisciplinary reviews. Developmental biology.

[19]  F. Pixley,et al.  CSF-1 signaling in macrophages: pleiotrophy through phosphotyrosine-based signaling pathways , 2012, Critical reviews in clinical laboratory sciences.

[20]  A. Werdich,et al.  The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion , 2011, Development.

[21]  B. Blaxall,et al.  G Protein Coupled Receptor Kinases as Therapeutic Targets in Cardiovascular Disease , 2011, Circulation research.

[22]  Jeroen Bakkers,et al.  Zebrafish as a model to study cardiac development and human cardiac disease , 2011, Cardiovascular research.

[23]  N. Mercader,et al.  Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish , 2011, Development.

[24]  S. Kjeldsen,et al.  The role of beta-blockers in the treatment of chronic heart failure. , 2011, Trends in pharmacological sciences.

[25]  W. Koch,et al.  βARKct: A Therapeutic Approach for Improved Adrenergic Signaling and Function in Heart Disease , 2010, Journal of cardiovascular translational research.

[26]  F. Zannad,et al.  Extracellular matrix fibrotic markers in heart failure , 2010, Heart Failure Reviews.

[27]  Y. Nishimura,et al.  Zebrafish beta-adrenergic receptor mRNA expression and control of pigmentation. , 2009, Gene.

[28]  C. H. Conrad,et al.  Isoproterenol-induced myocardial injury and diastolic dysfunction in mice: structural and functional correlates. , 2009, Comparative medicine.

[29]  Lan Ma,et al.  Kinase activity-independent regulation of cyclin pathway by GRK2 is essential for zebrafish early development , 2009, Proceedings of the National Academy of Sciences.

[30]  K. Poss Getting to the heart of regeneration in zebrafish. , 2007, Seminars in cell & developmental biology.

[31]  K. Urasawa,et al.  Chronic beta-adrenergic receptor stimulation enhances the expression of G-Protein coupled receptor kinases, GRK2 and GRK5, in both the heart and peripheral lymphocytes. , 2005, Circulation journal : official journal of the Japanese Circulation Society.

[32]  G. Torre-Amione Immune activation in chronic heart failure. , 2005, The American journal of cardiology.

[33]  G. Jaffe,et al.  Effect of NF-κB inhibition on TNF-α-induced apoptosis in human RPE cells , 2004 .

[34]  Martin J. Lohse,et al.  What Is the Role of &bgr;-Adrenergic Signaling in Heart Failure? , 2003, Circulation research.

[35]  M. Keating,et al.  Heart Regeneration in Zebrafish , 2002, Science.

[36]  R. Atkins,et al.  Macrophage accumulation at a site of renal inflammation is dependent on the M‐CSF/c‐fms pathway , 2002, Journal of leukocyte biology.

[37]  O. Mitrasinovic,et al.  Overexpression of Macrophage Colony-stimulating Factor Receptor on Microglial Cells Induces an Inflammatory Response* , 2001, The Journal of Biological Chemistry.

[38]  S. Vatner,et al.  β-adrenergic cardiac hypertrophy is mediated primarily by the β1-subtype in the rat heart , 2001 .

[39]  B. Chandrasekar,et al.  Chronic beta-adrenergic stimulation induces myocardial proinflammatory cytokine expression. , 2000, Circulation.

[40]  A. Borczuk,et al.  β-Adrenergic stimulation causes cardiocyte apoptosis: influence of tachycardia and hypertrophy. , 1998, American journal of physiology. Heart and circulatory physiology.

[41]  C. Nüsslein-Volhard,et al.  Large scale genetics in a small vertebrate, the zebrafish. , 1996, The International journal of developmental biology.

[42]  E. Lakatta,et al.  Isoproterenol infusion induces alterations in expression of hypertrophy-associated genes in rat heart. , 1995, The American journal of physiology.

[43]  M. Böhm,et al.  Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart. , 1994, Circulation research.

[44]  M. Böhm,et al.  Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. , 1993, Circulation.

[45]  I. Benjamin,et al.  Isoproterenol-Induced Myocardial Fibrosis in Relation to Myocyte Necrosis , 1989, Circulation research.

[46]  C. Malbon,et al.  Down-regulation of beta-adrenergic receptors: agonist-induced reduction in receptor mRNA levels. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[47]  D C Harrison,et al.  Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. , 1982, The New England journal of medicine.

[48]  M. Ekker,et al.  Interactive effects of development and hypoxia on catecholamine synthesis and cardiac function in zebrafish (Danio rerio) , 2010, Journal of Comparative Physiology B.

[49]  O. Brodde β-Adrenergic receptors in failing human myocardium , 2004, Basic Research in Cardiology.

[50]  M. Entman,et al.  The inflammatory response in myocardial infarction. , 2002, Cardiovascular research.

[51]  H. Schunkert,et al.  Development of heart failure following isoproterenol administration in the rat: role of the renin-angiotensin system. , 1998, Cardiovascular research.

[52]  M. Böhm,et al.  Analysis of beta-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: progressive reduction of beta 1-adrenergic receptor mRNA in heart failure. , 1996, Journal of the American College of Cardiology.

[53]  J. Szabó,et al.  Experimental cardiac hypertrophy induced by isoproterenol in the rat. , 1975, Acta physiologica Academiae Scientiarum Hungaricae.