Continuous cascade models for asset returns

In this paper, we make a short overview of continuous cascade models recently introduced to model asset return fluctuations. We show that these models account in a very parcimonious manner for most of 'stylized facts' of financial time-series. We review in more details the simplest continuous cascade namely the log-normal multifractal random walk (MRW). It can simply be considered as a stochastic volatility model where the (log-) volatility memory has a peculiar 'logarithmic' shape. This model possesses some appealing stability properties with respect to time aggregation. We describe how one can estimate it using a GMM method and we present some applications to volatility and (VaR) Value at Risk forecasting.

[1]  G. M. Molchan,et al.  Turbulent cascades: Limitations and a statistical test of the lognormal hypothesis , 1997 .

[2]  Maurizio Serva,et al.  Clustering of Volatility as a Multiscale Phenomenon , 1999 .

[3]  Edward C. Waymire,et al.  Statistical estimation for multiplicative cascades , 2000 .

[4]  Patrice Abry,et al.  New Insights into the Estimation of Scaling Exponents , 2004, Int. J. Wavelets Multiresolution Inf. Process..

[5]  B. Mandelbrot Fractals and Scaling In Finance: Discontinuity, Concentration, Risk , 2010 .

[6]  T. Lux Turbulence in financial markets: the surprising explanatory power of simple cascade models , 2001 .

[7]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[8]  G. M. Molchan,et al.  Scaling exponents and multifractal dimensions for independent random cascades , 1996 .

[9]  T. Lux Applications of Statistical Physics in Finance and Economics , 2007 .

[10]  E. Bacry,et al.  Singularity spectrum of fractal signals from wavelet analysis: Exact results , 1993 .

[11]  D. Sornette,et al.  ”Direct” causal cascade in the stock market , 1998 .

[12]  Laurent E. Calvet,et al.  Forecasting Multifractal Volatility , 1999 .

[13]  P. Phillips BOOTSTRAPPING I(1) DATA BY PETER C. B. PHILLIPS COWLES FOUNDATION PAPER NO. 1310 COWLES FOUNDATION FOR RESEARCH IN ECONOMICS , 2010 .

[14]  E. Bacry,et al.  Modelling fluctuations of financial time series: from cascade process to stochastic volatility model , 2000, cond-mat/0005400.

[15]  C. Granger,et al.  Modeling volatility persistence of speculative returns: A new approach , 1996 .

[16]  Quansheng Liu An extension of a functional equation of Poincaré and Mandelbrot , 2002 .

[17]  Thomas Lux,et al.  Long-term stochastic dependence in financial prices: evidence from the German stock market , 1996 .

[18]  Y. Gagne,et al.  Velocity probability density functions of high Reynolds number turbulence , 1990 .

[19]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[20]  F. Schmitt,et al.  Multifractal analysis of foreign exchange data , 1999 .

[21]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[22]  P. Gopikrishnan,et al.  Inverse cubic law for the distribution of stock price variations , 1998, cond-mat/9803374.

[23]  E. Bacry,et al.  Wavelets and multifractal formalism for singular signals: Application to turbulence data. , 1991, Physical review letters.

[24]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[25]  C. Dunis,et al.  Nonlinear modelling of high frequency financial time series , 1998 .

[26]  T. D. Matteo,et al.  Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development , 2004, cond-mat/0403681.

[27]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[28]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[29]  E. Bacry,et al.  Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  E. Bacry,et al.  Multifractal random walk. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[32]  E. Bacry,et al.  Log-Infinitely Divisible Multifractal Processes , 2002, cond-mat/0207094.

[33]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[34]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[35]  M. Ausloos,et al.  Multi-affine analysis of typical currency exchange rates , 1998 .

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  Laurent E. Calvet,et al.  Multifractality in Asset Returns: Theory and Evidence , 2002, Review of Economics and Statistics.

[38]  Benoit B. Mandelbrot,et al.  Multifractal Power Law Distributions: Negative and Critical Dimensions and Other “Anomalies,” Explained by a Simple Example , 2003 .

[39]  B. Mandelbrot Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier , 1974, Journal of Fluid Mechanics.

[40]  H. Stanley,et al.  Multifractal properties of price fluctuations of stocks and commodities , 2003, cond-mat/0308012.

[41]  B. Swart,et al.  Quantitative Finance , 2006, Metals and Energy Finance.

[42]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[43]  Patrice Abry,et al.  On non-scale-invariant infinitely divisible cascades , 2005, IEEE Transactions on Information Theory.

[44]  P. Malo Modeling electricity spot and futures price dependence: A multifrequency approach , 2009 .

[45]  J. Bouchaud,et al.  Theory Of Financial Risk And Derivative Pricing , 2000 .

[46]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[47]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[48]  J. Peinke,et al.  Turbulent cascades in foreign exchange markets , 1996, Nature.

[49]  B. Mandelbrot,et al.  Multifractal products of cylindrical pulses , 2002 .

[50]  Robert A. Rogowsky,et al.  Offprint Order Form for International Economics Review Number of Pages Charge per 50 Copies*** Charge per 100 Copies International Economic Review Ier Lawrence Klein Lecture: the Case against Intellectual Monopoly * , 2004 .