Phase Error Analysis of Discrete Dielectric Lens With Experimental Results at 94 GHz

This paper presents the phase error analysis of a single-layer discrete dielectric lens that uses nonresonant unit cell and can be fabricated using low-cost PCB technology. An extensive detailed study of the nonresonant unit cell is performed to understand the phase error loss mechanism and to find the best periodicity (unit cell size or interelement spacing) that produces almost the same phase response not only at different frequencies but also for both normal and oblique incidence which leads to lower oblique phase error (OPE) loss across the lens aperture and higher aperture efficiency. Unit cells of 0.47λ<sub>94 GHz</sub> ≤ periodicity ≤ 0.68λ<sub>94 GHz</sub> are studied and the optimum periodicity is addressed. Based on this study, three lenses of identical aperture area (100 × 100 × 6.35 mm<sup>3</sup>) but different unit cell sizes (0.5λ<sub>94 GHz</sub>, 0.53λ<sub>94 GHz</sub>, and 0.62λ<sub>94 GHz</sub>) are designed, fabricated, and tested. It is found that the maximum OPE is reduced from about 65° to less than 25°, aperture efficiency is improved by about 13.4% at 94 GHz, and the total number of unit cells is reduced by about 42.6% when periodicity changed from 0.47λ<sub>94 GHz</sub> to 0.62λ<sub>94 GHz</sub>, respectively. Furthermore, lens of 0.62λ<sub>94 GHz</sub> periodicity will have the highest aperture efficiency of 48.7%, gain = 37.8 dB at 94 GHz, beamwidth ≈1.2°, F/B ratio <b>≈</b>37.5 dB, measured |S<sub>11</sub>| <; -10 dB, cross-pol <; -27dBandoffersSLLH <; -24.3dB,andSLLE <; -18.5 dB.

[1]  W. Menzel,et al.  Flat printed reflector antenna for mm-wave applications , 1988 .

[2]  B. D. Nguyen,et al.  W-Band Fresnel Zone Plate Reflector for Helicopter Collision Avoidance Radar , 2007, IEEE Transactions on Antennas and Propagation.

[3]  Marek E. Bialkowski,et al.  An equivalent waveguide approach to designing of reflect arrays with the use of variable-size microstrip patches , 2002 .

[4]  Wei Hong,et al.  W-Band Mutlilayer Perforated Dielectric Substrate Lens , 2014, IEEE Antennas and Wireless Propagation Letters.

[5]  D. McGrath Planar three-dimensional constrained lenses , 1986 .

[6]  T. Koleck,et al.  Wideband Low-Loss Linear and Circular Polarization Transmit-Arrays in V-Band , 2011, IEEE Transactions on Antennas and Propagation.

[7]  Yan Yang,et al.  Three-dimensional large-aperture lens antennas with gradient refractive index , 2013, Science China Information Sciences.

[8]  A. Petosa,et al.  Design and performance of a perforated dielectric fresnel lens , 2003 .

[9]  Tie Jun Cui,et al.  High-Directivity Emissions with Flexible Beam Numbers and Beam Directions Using Gradient-Refractive-Index Fractal Metamaterial , 2014, Scientific Reports.

[10]  T. Cui,et al.  Three-dimensional broadband and high-directivity lens antenna made of metamaterials , 2011 .

[11]  Wei Hong,et al.  Discrete Dielectric Reflectarray and Lens for E-Band With Different Feed , 2014, IEEE Antennas and Wireless Propagation Letters.

[12]  J. Encinar,et al.  Bandwidth Improvement in Large Reflectarrays by Using True-Time Delay , 2008, IEEE Transactions on Antennas and Propagation.

[13]  M. R. Chaharmir,et al.  A Wideband Transmitarray Using Dual-Resonant Double Square Rings , 2010, IEEE Transactions on Antennas and Propagation.

[14]  Fan Yang,et al.  High-Gain and Broadband Transmitarray Antenna Using Triple-Layer Spiral Dipole Elements , 2014, IEEE Antennas and Wireless Propagation Letters.

[15]  Atef Z. Elsherbeni,et al.  BANDWIDTH IMPROVEMENT OF REFLECTARRAY ANTENNAS USING CLOSELY SPACED ELEMENTS , 2011 .

[16]  B. D. Nguyen,et al.  94 GHz Folded Fresnel Reflector Using C-Patch Elements , 2008, IEEE Transactions on Antennas and Propagation.

[17]  Marek E. Bialkowski,et al.  BANDWIDTH CONSIDERATIONS FOR A MICROSTRIP REFLECTARRAY , 2008 .

[18]  S. M. Gaber,et al.  TRANSMITARRAY USING PERFORATED DIELECTRIC MATERIAL FOR WIDEBAND APPLICATIONS , 2012 .

[19]  Wei Hong,et al.  A Ka-Band Reflectarray Implemented With a Single-Layer Perforated Dielectric Substrate , 2012, IEEE Antennas and Wireless Propagation Letters.

[20]  J. Huang,et al.  A C/ka dual frequency dual Layer circularly polarized reflectarray antenna with microstrip ring elements , 2004, IEEE Transactions on Antennas and Propagation.

[21]  Julien Perruisseau-Carrier,et al.  Contributions to the Modeling and Design of Reconfigurable Reflecting Cells Embedding Discrete Control Elements , 2010, IEEE Transactions on Microwave Theory and Techniques.

[22]  Yang Hao,et al.  Slim Luneburg lens for antenna applications. , 2011, Optics express.

[23]  H. Hassani,et al.  Low-Profile Slot Transmitarray Antenna , 2015, IEEE Transactions on Antennas and Propagation.

[24]  Atef Z. Elsherbeni,et al.  Transmitarray Antenna Design Using Cross-Slot Elements With No Dielectric Substrate , 2014, IEEE Antennas and Wireless Propagation Letters.

[25]  M. Beruete,et al.  Molding Left- or Right-Handed Metamaterials by Stacked Cutoff Metallic Hole Arrays , 2007, IEEE Transactions on Antennas and Propagation.

[26]  Fan Yang,et al.  Broadband Reflectarray Antennas Using Double-Layer Subwavelength Patch Elements , 2010, IEEE Antennas and Wireless Propagation Letters.

[27]  Yahya Rahmat-Samii,et al.  On the Reflection Characteristics of a Reflectarray Element with Low-Loss and High-Loss Substrates , 2010, IEEE Antennas and Propagation Magazine.

[28]  Radu Marin,et al.  Investigations on Liquid Crystal Reconfigurable Unit Cells for mm-Wave Reflectarrays , 2008 .

[29]  Fan Yang,et al.  Transmitarray antenna design using slot-type element , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[30]  F. Tsai,et al.  Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach , 2003 .

[31]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[32]  Yang Hao,et al.  Surface Wave Transformation Lens Antennas , 2014, IEEE Transactions on Antennas and Propagation.

[33]  D. Pozar Flat lens antenna concept using aperture coupled microstrip patches , 1996 .