Organic Synthesis in Flow: Toward Higher Levels of Sustainability

[1]  David Cantillo,et al.  Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients. , 2015, Angewandte Chemie.

[2]  Denise Ott,et al.  Rules and benefits of Life Cycle Assessment in green chemical process and synthesis design: a tutorial review , 2015 .

[3]  Assunta Marrocchi,et al.  Flow approaches towards sustainability , 2014 .

[4]  W. Qin,et al.  Catalytic conversion of glycerol to oxygenated fuel additive in a continuous flow reactor: Process optimization , 2014 .

[5]  Z. Xiu,et al.  Statistical Optimization for Biodiesel Production from Soybean Oil in a Microchannel Reactor , 2014 .

[6]  Magnus Rueping,et al.  Self-Optimizing Reactor Systems: Algorithms, On-line Analytics, Setups, and Strategies for Accelerating Continuous Flow Process Optimization , 2014 .

[7]  Volker Hessel,et al.  Life cycle assessment for the direct synthesis of adipic acid in microreactors and benchmarking to the commercial process , 2013 .

[8]  A. deMello,et al.  The past, present and potential for microfluidic reactor technology in chemical synthesis. , 2013, Nature chemistry.

[9]  Liselotte Schebek,et al.  Life Cycle Assessment in Chemical and Micro Reaction Engineering , 2013 .

[10]  Klavs F. Jensen,et al.  The role of flow in green chemistry and engineering , 2013 .

[11]  Bert Heirman,et al.  Reduced resource consumption through three generations of Galantamine·HBr synthesis , 2013 .

[12]  J. V. Hest,et al.  Synthesis of Methoxyisopropyl (MIP)-Protected (R)-Mandelonitrile and Derivatives in a Flow Reactor , 2012, Journal of Flow Chemistry.

[13]  F. Rutjes,et al.  Optimisation and Scale-up of α-Bromination of Acetophenone in a Continuous Flow Microreactor , 2012, Journal of Flow Chemistry.

[14]  Antonio M. Rodríguez,et al.  Continuous-Flow Microliter Microwave Irradiation in the Synthesis of Isoxazole Derivatives: An Optimization Procedure , 2012 .

[15]  Klavs F. Jensen,et al.  Automated Multitrajectory Method for Reaction Optimization in a Microfluidic System using Online IR Analysis , 2012 .

[16]  Floris P. J. T. Rutjes,et al.  Fast Scale-Up Using Microreactors: Pyrrole Synthesis from Micro to Production Scale , 2011 .

[17]  Martyn Poliakoff,et al.  Self-optimizing continuous reactions in supercritical carbon dioxide. , 2011, Angewandte Chemie.

[18]  Erica Farnetti,et al.  Alternative intermediates for glycerol valorization: iridium-catalyzed formation of acetals and ketals , 2010 .

[19]  Klavs F Jensen,et al.  An integrated microreactor system for self-optimization of a Heck reaction: from micro- to mesoscale flow systems. , 2010, Angewandte Chemie.

[20]  Jonathan P. McMullen,et al.  An Automated Microfluidic System for Online Optimization in Chemical Synthesis , 2010 .

[21]  Gemma Vicente,et al.  Acetalisation of bio-glycerol with acetone to produce solketal over sulfonic mesostructured silicas. , 2010 .

[22]  Ron Wehrens,et al.  Flash chemistry extensively optimized: high-temperature Swern-Moffatt oxidation in an automated microreactor platform. , 2010, Chemistry, an Asian journal.

[23]  P. Holloway,et al.  Quantum Dots and Their Multimodal Applications: A Review , 2010, Materials.

[24]  C. Mota,et al.  Glycerin Derivatives as Fuel Additives: The Addition of Glycerol/Acetone Ketal (Solketal) in Gasolines , 2010 .

[25]  Atsushi Sugimoto,et al.  An automated-flow microreactor system for quick optimization and production: application of 10- and 100-gram order productions of a matrix metalloproteinase inhibitor using a Sonogashira coupling reaction , 2009 .

[26]  Volker Hessel,et al.  Environmentally Benign Microreaction Process Design by Accompanying (Simplified) Life Cycle Assessment , 2009 .

[27]  Riccardo Leardi,et al.  Experimental design in chemistry: A tutorial. , 2009, Analytica chimica acta.

[28]  Floris P. J. T. Rutjes,et al.  Optimizing the Deprotection of the Amine Protecting p-Methoxyphenyl Group in an Automated Microreactor Platform , 2009 .

[29]  Christopher Pfleger,et al.  Adaptation of an Exothermic and Acylazide-Involving Synthesis Sequence to Microreactor Technology , 2009 .

[30]  Timothy M. Braden,et al.  Improved Synthesis of 1-(Azidomethyl)-3,5-bis-(trifluoromethyl)benzene: Development of Batch and Microflow Azide Processes , 2009 .

[31]  M. Bezerra,et al.  Response surface methodology (RSM) as a tool for optimization in analytical chemistry. , 2008, Talanta.

[32]  Rob C. Wheeler,et al.  Continuous Flow Microwave-Assisted Reaction Optimization and Scale-Up Using Fluorous Spacer Technology , 2008 .

[33]  A. deMello,et al.  Intelligent routes to the controlled synthesis of nanoparticles. , 2007, Lab on a chip.

[34]  E. Goddard-Borger,et al.  An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. , 2007, Organic letters.

[35]  S. Ferreira,et al.  Box-Behnken design: an alternative for the optimization of analytical methods. , 2007, Analytica chimica acta.

[36]  Jeremy L. Steinbacher,et al.  Greener approaches to organic synthesis using microreactor technology. , 2007, Chemical reviews.

[37]  Dana Kralisch,et al.  Assessment of the ecological potential of microreaction technology , 2007 .

[38]  P. Seeberger,et al.  Optimization of Glycosylation Reactions in a Microreactor , 2007 .

[39]  Peter H Seeberger,et al.  Microreactors as tools for synthetic chemists-the chemists' round-bottomed flask of the 21st century? , 2006, Chemistry.

[40]  E. Boatman,et al.  A safer, easier, faster synthesis for CdSe quantum dot nanocrystals , 2005 .

[41]  K. Mae,et al.  Room-temperature Swern oxidations by using a microscale flow system. , 2005, Angewandte Chemie.

[42]  Dominique M. Roberge,et al.  Microreactor Technology: A Revolution for the Fine Chemical and Pharmaceutical Industries? , 2005 .

[43]  Paul Watts,et al.  The application of micro reactors for organic synthesis. , 2005, Chemical Society reviews.

[44]  Hiroyuki Nakamura,et al.  Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor. , 2004, Chemical communications.

[45]  Eric J. Beckman,et al.  Supercritical and near-critical CO2 in green chemical synthesis and processing , 2004 .

[46]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[47]  A. Walker,et al.  Continuous Reactor Technology for Ketal Formation: An Improved Synthesis of Solketal , 2001 .

[48]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[49]  M. Hanna,et al.  Role of miR-10b in breast cancer metastasis , 2010, Breast Cancer Research.

[50]  M. S. Khots,et al.  D-optimal designs , 1995 .

[51]  K. Burton,et al.  Optimization using the super-modified simplex method , 1990 .

[52]  A. Mancuso,et al.  Structure of the dimethyl sulfoxide-oxalyl chloride reaction product. Oxidation of heteroaromatic and diverse alcohols to carbonyl compounds , 1979 .

[53]  H. Hiemstra,et al.  CuI‐Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective , 2005 .

[54]  D. Swern,et al.  Oxidation of alcohols by “activated” dimethyl sulfoxide. a preparative, steric and mechanistic study , 1978 .

[55]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..