Mesoscopic Globular Self‐assemblies of Platinum(II) Complexes Containing Porphyrins

[1]  M. Castriciano,et al.  Micellar aggregates of platinum(II) complexes containing porphyrins , 2000 .

[2]  P. Stang,et al.  Self-assembly of discrete cyclic nanostructures mediated by transition metals. , 2000, Chemical reviews.

[3]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[4]  J. Hofkens,et al.  Ring formation in evaporating porphyrin derivative solutions , 1999 .

[5]  V. Catalano,et al.  (2,2′: 6′,2″‐Terpyridine)Methylplatinum(II) Chloride and (1,10‐Phenanthroline)‐Methylchloroplatinum(II) , 2007 .

[6]  M. C. Feiters,et al.  A Supramolecular Cytochrome P450 Mimic , 1998 .

[7]  J. Fuhrhop,et al.  Membranes and Molecular Assemblies: The Synkinetic Approach , 1998 .

[8]  D. Reinhoudt,et al.  Non-covalent synthesis of multiporphyrin systems , 1998 .

[9]  P. Barbara,et al.  Mesostructure of Evaporated Porphyrin Thin Films: Porphyrin Wheel Formation , 1997 .

[10]  C. Böttcher,et al.  Solid Vesicle Membrane Made of meso-Tetrakis[(bixinylamino)-o-phenyl]porphyrins , 1997 .

[11]  G. Arena,et al.  Rates of Dimethyl Sulfoxide Exchange in Monoalkyl Cationic Platinum(II) Complexes Containing Nitrogen Bidentate Ligands. A Proton NMR Study. , 1996, Inorganic chemistry.

[12]  P. Collings,et al.  Resonance light scattering: a new technique for studying chromophore aggregation , 1995, Science.

[13]  J. Fuhrhop,et al.  Micellar fibres of tin(IV) porphyrins with axial hydrogen chloride ligands as facial head groups , 1994 .

[14]  U. Bindig,et al.  Micellar rods and vesicular tubules made of 14''',16'''-diaminoporphyrins , 1993 .

[15]  M. Kanatzidis,et al.  Syntheses, structures, and properties of six novel alkali metal tin sulfides: K2Sn2S8, .alpha.-Rb2Sn2S8, .beta.-Rb2Sn2S8, K2Sn2S5, Cs2Sn2S6, and Cs2SnS14 , 1993 .

[16]  H. Nishide,et al.  Octopus-porphyrins: their assembly and oxygen-binding in aqueous medium , 1993 .

[17]  K. Arai,et al.  Lipid–porphyrin vesicles: morphology and O2 binding in aqueous medium , 1993 .

[18]  C. Boettcher,et al.  Chiral micellar porphyrin fibers with 2-aminoglycosamide head groups , 1992 .

[19]  D. Sazou,et al.  Studies of micellar metalloporphyrins. Synthesis and spectroscopic characterization of [(P)H2]+ and [(P)MII]+ where P = the dianion of 5-(4-N-hexadecylpyridiniumyl-10,15,20-triphenylporphyrin bromide and M = vanadyl, nickel or copper , 1991 .

[20]  A. J. Sobral,et al.  Metal-assisted reactions. Part 22. Synthesis of perhalogenated prophyrins and their use as oxidation catalysts , 1991 .

[21]  K. Kadish,et al.  Spectroscopic characterization of meso-tetrakis(1-methylpyridinium-4-yl)porphyrins, [(TMpyP)H2]4+ and [(TMpyP)M]4+, in aqueous micellar media, where M = VO2+, Cu(II), and Zn(II) , 1991 .

[22]  S. Mazumdar Proton and carbon-13 NMR studies on the structure of micelles encapsulating hemes in aqueous sodium dodecyl sulfate solutions , 1990 .

[23]  K. Kadish,et al.  Micellar effects on the aggregation of tetraanionic porphyrins. Spectroscopic characterization of free-base meso-tetrakis(4-sulfonatophenyl)porphyrin, (TPPS)H2, and (TPPS)M (M = zinc(II), copper(II), and vanadyl) in aqueous micellar media , 1989 .

[24]  R. Neumann,et al.  Membrane-spanning steroidal metalloporphyrins as site-selective catalysts in synthetic vesicles , 1987 .

[25]  Kuppuswamy Kalyanasundaram,et al.  Photochemistry of water-soluble porphyrins: comparative study of isomeric tetrapyridyl- and tetrakis(N-methylpyridiniumyl)porphyrins , 1984 .

[26]  D. Mansuy,et al.  Mono-oxigenase-like dioxygen activation leading to alkane hydroxylation and olefin epoxidation by an MnIII(porphyrin)–ascorbate biphasic system , 1983 .

[27]  G. N. Mar,et al.  Spectroscopic studies of dicyanohemin in cationic micelles , 1982 .

[28]  R. K. Barnes,et al.  Glyoxal derivatives—I , 1970 .