A multi-objective electromagnetism algorithm for a bi-objective flowshop scheduling problem

Abstract This paper deals with a bi-objective flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which all jobs may not be processed by all machines. Furthermore, we consider transportation times between machines. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presents a new multi-objective electromagnetism algorithm (MOEM). The motivation behind this algorithm has risen from the attraction–repulsion mechanism of electromagnetic theories. Along with MOEA, we apply simulated annealing to solve the given problem. A set of experimental instances are carried out to evaluate the algorithm by advanced multi-objective performance measures. The related results show that a variant of our proposed MOEM provides sound performance comparing with other algorithms.

[1]  M. M. Ali,et al.  Differential evolution algorithms using hybrid mutation , 2007, Comput. Optim. Appl..

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  Jianjun Hu,et al.  The Hierarchical Fair Competition (HFC) Framework for Sustainable Evolutionary Algorithms , 2005, Evolutionary Computation.

[4]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[5]  Bert De Reyck,et al.  A hybrid scatter search/electromagnetism meta-heuristic for project scheduling , 2006, Eur. J. Oper. Res..

[6]  Colin R. Reeves,et al.  A genetic algorithm for flowshop sequencing , 1995, Comput. Oper. Res..

[7]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[8]  Marius M. Solomon,et al.  A computational study of heuristics for two-stage flexible flowshops , 1996 .

[9]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[10]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[11]  Martin Josef Geiger,et al.  On operators and search space topology in multi-objective flow shop scheduling , 2007, Eur. J. Oper. Res..

[12]  Jatinder N. D. Gupta,et al.  Two-Stage, Hybrid Flowshop Scheduling Problem , 1988 .

[13]  Éric D. Taillard,et al.  Benchmarks for basic scheduling problems , 1993 .

[14]  Jean-Charles Billaut,et al.  Multicriteria scheduling problems: a survey , 2001, RAIRO Oper. Res..

[15]  Rubén Ruiz,et al.  A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem , 2008, INFORMS J. Comput..

[16]  Jürgen Teich,et al.  Covering Pareto-optimal fronts by subswarms in multi-objective particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[17]  Jean-Charles Billaut,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[18]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[19]  John W. Fowler,et al.  A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines , 2003, Comput. Oper. Res..

[20]  Mostafa Zandieh,et al.  Modeling and scheduling a case of flexible flowshops: Total weighted tardiness minimization , 2009, Comput. Ind. Eng..

[21]  A. Nagar,et al.  Multiple and bicriteria scheduling : A literature survey , 1995 .

[22]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[23]  S. Ponnambalam,et al.  A TSP-GA multi-objective algorithm for flow-shop scheduling , 2004 .

[24]  Sigrid Knust,et al.  Makespan minimization for flow-shop problems with transportation times and a single robot , 2001, Discret. Appl. Math..

[25]  Alireza Rahimi-Vahed,et al.  A multi-objective particle swarm for a flow shop scheduling problem , 2006, J. Comb. Optim..

[26]  Turan Paksoy,et al.  A genetic algorithm approach for multi-objective optimization of supply chain networks , 2006, Comput. Ind. Eng..

[27]  Thomas Stützle,et al.  An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives , 2008, Eur. J. Oper. Res..

[28]  Hong Wang,et al.  Flexible flow shop scheduling: optimum, heuristics and artificial intelligence solutions , 2005, Expert Syst. J. Knowl. Eng..

[29]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[30]  Shu-Cherng Fang,et al.  An Electromagnetism-like Mechanism for Global Optimization , 2003, J. Glob. Optim..

[31]  Pei-Chann Chang,et al.  Two-phase sub population genetic algorithm for parallel machine-scheduling problem , 2005, Expert Syst. Appl..

[32]  Seyyed M. T. Fatemi Ghomi,et al.  Earliness tardiness production planning and scheduling in flexible flowshop systems under finite planning horizon , 2007, Appl. Math. Comput..

[33]  Ameur Soukhal,et al.  Complexity of flow shop scheduling problems with transportation constraints , 2005, Eur. J. Oper. Res..

[34]  Reza Tavakkoli-Moghaddam,et al.  A memetic algorithm for the flexible flow line scheduling problem with processor blocking , 2009, Comput. Oper. Res..

[35]  Richard J. Linn,et al.  Hybrid flow shop scheduling: a survey , 1999 .

[36]  Kazuyuki Yoshimura,et al.  Performance evaluation of acceptance probability functions for multi-objective SA , 2003, Comput. Oper. Res..

[37]  Eugeniusz Nowicki,et al.  The flow shop with parallel machines: A tabu search approach , 1998, Eur. J. Oper. Res..