Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.

Ultrahigh-resolution optical coherence tomography uses broadband light sources to achieve axial image resolutions on the few micron scale. Fourier domain detection methods enable more than an order of magnitude increase in imaging speed and sensitivity, thus overcoming the sensitivity limitations inherent in ultrahigh-resolution OCT using standard time domain detection. Fourier domain methods also provide direct access to the spectrum of the optical signal. This enables automatic numerical dispersion compensation, a key factor in achieving ultrahigh image resolutions. We present ultrahigh-resolution, high-speed Fourier domain OCT imaging with an axial resolution of 2.1 ìm in tissue and 16,000 axial scans per second at 1024 pixels per axial scan. Ultrahigh-resolution spectral domain OCT is shown to provide a ~100x increase in imaging speed when compared to ultrahigh-resolution time domain OCT. In vivo imaging of the human retina is demonstrated. We also present a general technique for automatic numerical dispersion compensation, which is applicable to spectral domain as well as swept source embodiments of Fourier domain OCT.

[1]  P. Becker,et al.  Compression of optical pulses to six femtoseconds by using cubic phase compensation. , 1987, Optics letters.

[2]  L. M. Smith,et al.  Absolute displacement measurements using modulation of the spectrum of white light in a Michelson interferometer. , 1989, Applied optics.

[3]  H. Yamada,et al.  Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light. , 1990, Optics letters.

[4]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[5]  J. Fujimoto,et al.  High-speed optical coherence domain reflectometry. , 1992, Optics letters.

[6]  B. Lemoff,et al.  Cubic-phase-free dispersion compensation in solid-state ultrashort-pulse lasers. , 1993, Optics letters.

[7]  J. Fujimoto,et al.  Optical coherence tomography of the human retina. , 1995, Archives of ophthalmology.

[8]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[9]  J G Fujimoto,et al.  High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al(2)O(3) laser source. , 1995, Optics letters.

[10]  J. Duker,et al.  Imaging of macular diseases with optical coherence tomography. , 1995, Ophthalmology.

[11]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[12]  J. Fujimoto,et al.  Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. , 1997, Optics letters.

[13]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[14]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[15]  A J Welch,et al.  Spectrally resolved white-light interferometry for measurement of ocular dispersion. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  C K Hitzenberger,et al.  Dispersion effects in partial coherence interferometry: implications for intraocular ranging. , 1999, Journal of biomedical optics.

[17]  J G Fujimoto,et al.  Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. , 1999, Optics letters.

[18]  C K Hitzenberger,et al.  Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. , 2000, Optics letters.

[19]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.

[20]  J. Nelson,et al.  Stable carrier generation and phase-resolved digital data processing in optical coherence tomography. , 2001, Applied optics.

[21]  J. Fujimoto,et al.  Ultrahigh-resolution ophthalmic optical coherence tomography , 2001, Nature Medicine.

[22]  R. Zawadzki,et al.  Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography. , 2001, Optics express.

[23]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[24]  A. Fercher,et al.  Full range complex spectral optical coherence tomography technique in eye imaging. , 2002, Optics letters.

[25]  A. Fercher,et al.  Submicrometer axial resolution optical coherence tomography. , 2002, Optics letters.

[26]  Daniel L Marks,et al.  Autofocus algorithm for dispersion correction in optical coherence tomography. , 2003, Applied optics.

[27]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[28]  J. Fujimoto,et al.  Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. , 2003, Archives of ophthalmology.

[29]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[30]  J. Fujimoto Optical coherence tomography for ultrahigh resolution in vivo imaging , 2003, Nature Biotechnology.

[31]  S. Yun,et al.  High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. , 2003, Optics letters.

[32]  I Hartl,et al.  Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber. , 2003, Optics express.

[33]  M. Wojtkowski,et al.  Real-time in vivo imaging by high-speed spectral optical coherence tomography. , 2003, Optics letters.

[34]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[35]  A. Fercher,et al.  Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. , 2003, Optics letters.

[36]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[37]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[38]  W Drexler,et al.  Compact, broad-bandwidth fiber laser for sub-2-microm axial resolution optical coherence tomography in the 1300-nm wavelength region. , 2003, Optics letters.

[39]  Zhongping Chen,et al.  Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. , 2003, Optics letters.

[40]  Maciej Wojtkowski,et al.  Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography. , 2004, Optics letters.

[41]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[42]  Maciej Wojtkowski,et al.  Complex spectral OCT in human eye imaging in vivo , 2004 .