Radiation degradation of methyl α‐chloroacrylate–methacrylonitrile copolymers

The radiation degradation behavior of methyl ..cap alpha..-chloroacrylate (MCA) and methacrylonitrile (MCN) copolymers has been investigated as part of a program to develop high-sensitivity polymeric resists for integrated circuit manufacture. High-molecular-weight copolymers were prepared by emulsion techniques. Several different copolymer compositions were prepared varying from 19 to 68 mol % MCA. These copolymers were fractionated and then subjected to ..gamma.. irradiation from a /sup 60/Co source. The G/sub s/ - G/sub x/, G/sub s/ - 4G/sub x/ values were determined from anti M/sub n//sup -1/ and anti M/sub w//sup -1/ versus dose plots, and the G/sub s/ and G/sub x/ values were then calculated. Molecular weights of both unirradiated and irradiated polymers were analyzed by membrane osmometry and gel permeation chromatography. All copolymers exhibited higher degradation susceptibilities than that of poly(methyl methacrylate), which has G/sub s/ = 1.3. The individual G/sub s/ and G/sub x/ values of the copolymers were found to fall between those of the two homopolymers, poly(methyl ..cap alpha..-chloracrylate) (G/sub s/ = 6.0) and polymethacrylonitrile (G/sub s/ = 3.1). The dependence of G/sub s/ and G/sub x/ values on molecular weight was minor. The crosslinking susceptibility of the poly(methyl ..cap alpha..-chloroacrylate) (G/sub x/ = 0.8) was greatlymore » decreased by copolymerization with MCN. Relatively small amounts of MCN caused alarge drop in G/sub x/, i.e., G/sub x/ = 0.15 at 32% MCN and G/sub x/ = 0.03 at 51% MCN. The observation could be attributed to the decreasing probability that crosslinking sites, in the MCA monomer units on adjacent chains, would lie in close proximity. 3 figures, 8 tables.« less