Concatenated Permutation Block Codes for Space-Time Shift Keying in Indoor Visible Light Communication

In this paper, concatenated permutation codewordsare used to improve the code rate of permutation-aided space-time shift keying in multiple input multiple output (MIMO)visible light communication. Soft-decision detection schemes arethen designed for the receiver and compared with the maximumlikelihood (ML) detection method. Bit error rate (BER) resultsshow the soft-decision detection algorithm is able to detect thetransmitted information without knowledge of the channel stateinformation. The BER results also show a close match with theML detection in some codebooks.

[1]  R. Schober,et al.  Performance and Design of Coherent and Differential Space-Time Coded FSO Systems , 2012, Journal of Lightwave Technology.

[2]  Katta G. Murty,et al.  Letter to the Editor - An Algorithm for Ranking all the Assignments in Order of Increasing Cost , 1968, Oper. Res..

[3]  Chang Wook Ahn,et al.  Spatial Modulation - A New Low Complexity Spectral Efficiency Enhancing Technique , 2006, 2006 First International Conference on Communications and Networking in China.

[4]  Ling Cheng,et al.  Permutation-Aided Space-Time Shift Keying for Indoor Visible Light Communication , 2019, 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm).

[5]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[6]  Yue Xiao,et al.  Space-Time Block Coded Differential Spatial Modulation , 2017, IEEE Transactions on Vehicular Technology.

[7]  Masao Nakagawa,et al.  Fundamental analysis for visible-light communication system using LED lights , 2004, IEEE Transactions on Consumer Electronics.

[8]  Naoki Ishikawa,et al.  Unified Differential Spatial Modulation , 2014, IEEE Wireless Communications Letters.

[9]  Jaco Versfeld,et al.  Soft-Decision Decoding of Permutation Block Codes in AWGN and Rayleigh Fading Channels , 2017, IEEE Communications Letters.

[10]  Xiang Cheng,et al.  A differential scheme for Spatial Modulation , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[11]  Jos H. Weber,et al.  Concatenated permutation block codes based on set partitioning for substitution and deletion error-control , 2013, 2013 IEEE Information Theory Workshop (ITW).

[12]  U. Bapst,et al.  Wireless in-house data communication via diffuse infrared radiation , 1979, Proceedings of the IEEE.

[13]  Lajos Hanzo,et al.  Generalized Space-Time Shift Keying Designed for Flexible Diversity-, Multiplexing- and Complexity-Tradeoffs , 2011, IEEE Transactions on Wireless Communications.

[14]  Peter Frankl,et al.  On the Maximum Number of Permutations with Given Maximal or Minimal Distance , 1977, J. Comb. Theory, Ser. A.

[15]  Dominic C. O'Brien,et al.  Home access networks using optical wireless transmission , 2008, 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications.

[16]  Harald Haas,et al.  Performance Comparison of MIMO Techniques for Optical Wireless Communications in Indoor Environments , 2013, IEEE Transactions on Communications.

[17]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[18]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[19]  K. G. Murty,et al.  An Algorithm for the Traveling Salesman Problem , 2019 .

[20]  M.L. Miller,et al.  A comparison of two algorithms for determining ranked assignments with application to multitarget tracking and motion correspondence , 1997, IEEE Transactions on Aerospace and Electronic Systems.