Multi-Resolution Stochastic 3D Shape Models for Image Segmentation

3D Shape modeling has been a very prominent part of Computer Vision over the past decade. Several shape modeling techniques have been proposed in literature, some are local (distributed parameter) while others are global (lumped parameter) in terms of the parameters required to describe the shape. Hybrid models that combine both ends of this parameter spectrum have been in vogue only recently. However, they do not allow a smooth transition between the two extremes of this parameter spectrum.

[1]  O. Rioul,et al.  Wavelets and signal processing , 1991, IEEE Signal Processing Magazine.

[2]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[4]  J C Honeyman,et al.  Angelman and Prader-Willi syndrome: a magnetic resonance imaging study of differences in cerebral structure. , 1993, American journal of medical genetics.

[5]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  R. Bajcsy,et al.  Three dimensional object representation revisited , 1987 .

[7]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Baba C. Vemuri,et al.  Constructing Intrinsic Parameters with Active Models for Invariant Surface Reconstruction , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Dimitris N. Metaxas,et al.  Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics , 1991, IEEE Trans. Pattern Anal. Mach. Intell..