Wannier functions approach to van der Waals interactions in ABINIT

The method to calculate van der Waals interactions based on maximally localized Wannier functions (MLWFs), proposed by Silvestrelli [Phys. Rev. Lett. 100 (2008) 053002], has been implemented within the ab initio DFT program ABINIT. In addition to a brief review of the theoretical background behind this methodology, we present the details of the implementation, which will help users to assess van der Waals corrections in both molecular and periodic systems with a negligible additional computational cost. Some tests on argon dimer, argon FCC solid, benzene dimer and bilayer of graphene are presented. A discussion about the reliability of the method is also included.

[1]  Xavier Gonze,et al.  Accurate density functionals: Approaches using the adiabatic-connection fluctuation-dissipation theorem , 2002 .

[2]  J. Soler,et al.  Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. , 2008, Physical review letters.

[3]  Hendrik Ulbricht,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2004 .

[4]  P. Jankowski,et al.  Potential energy surface for interactions between two hydrogen molecules. , 2008, The Journal of chemical physics.

[5]  Gino A. DiLabio,et al.  Dispersion Interactions in Density‐Functional Theory , 2010 .

[6]  Pavel Hobza,et al.  Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. , 2010, Chemical reviews.

[7]  P. Herman,et al.  Vacuum ultraviolet laser spectroscopy. V. Rovibronic spectra of Ar2 and constants of the ground and excited states , 1988 .

[8]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[9]  Beate Paulus,et al.  Ab initio coupled-cluster calculations for the fcc and hcp structures of rare-gas solids , 2000 .

[10]  Walter Kohn,et al.  Analytic Properties of Bloch Waves and Wannier Functions , 1959 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  P. Hyldgaard,et al.  Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond , 2007, cond-mat/0703442.

[13]  H. Krause,et al.  Binding energies of small benzene clusters , 1991 .

[14]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[15]  D. Langreth,et al.  Van Der Waals Interactions In Density Functional Theory , 2007 .

[16]  Peter Pulay,et al.  High accuracy benchmark calculations on the benzene dimer potential energy surface , 2007 .

[17]  Pavel Hobza,et al.  State-of-the-art correlated ab initio potential energy curves for heavy rare gas dimers: Ar2, Kr2, and Xe2 , 2003 .

[18]  H. H. Chen,et al.  Thermodynamic consistency of vapor pressure and calorimetric data for argon, krypton, and xenon , 1977 .

[19]  I. Tavernelli,et al.  Multicenter-type corrections to standard DFT exchange and correlation functionals , 2009 .

[20]  J. M. Farrar,et al.  Intermolecular Potentials from Crossed Beam Differential Elastic Scattering Measurements. VII. para‐H2+para‐H2 , 1972 .

[21]  C. David Sherrill,et al.  Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-Displaced Configurations , 2004 .

[22]  E. A. Walters,et al.  Dissociation energies of the benzene dimer and dimer cation , 1987 .

[23]  Shen Li,et al.  A density functional for sparse matter , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Pier Luigi Silvestrelli,et al.  Van der Waals interactions in density functional theory using Wannier functions. , 2009, The journal of physical chemistry. A.

[25]  R. Simmons,et al.  Measurements of X-Ray Lattice Constant, Thermal Expansivity, and Isothermal Compressibility of Argon Crystals , 1966 .

[26]  Fernando Nogueira,et al.  Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE, the Atomic Pseudo-potentials Engine , 2008, Comput. Phys. Commun..

[27]  O. A. von Lilienfeld,et al.  Library of dispersion-corrected atom-centered potentials for generalized gradient approximation functionals: Elements H, C, N, O, He, Ne, Ar, and Kr , 2007 .

[28]  Valentino R. Cooper,et al.  Van der Waals density functional: an appropriate exchange functional , 2009, 0910.1250.

[29]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[30]  Pier Luigi Silvestrelli,et al.  Van der Waals interactions in DFT made easy by Wannier functions. , 2007, Physical review letters.

[31]  K. Patkowski,et al.  Accurate ab initio potential for argon dimer including highly repulsive region , 2005 .

[32]  N. Marzari,et al.  Exponential localization of Wannier functions in insulators. , 2006, Physical review letters.

[33]  Georg Kresse,et al.  Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory , 2008 .

[34]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[35]  M. Dion,et al.  Erratum: Van der Waals Density Functional for General Geometries [Phys. Rev. Lett. 92, 246401 (2004)] , 2005 .

[36]  P. Schwerdtfeger,et al.  Complete basis set limit second-order Møller-Plesset calculations for the fcc lattices of neon, argon, krypton, and xenon. , 2009, The Journal of chemical physics.

[37]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[38]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[39]  B. Sumpter,et al.  Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. , 2011, The Journal of chemical physics.

[40]  C. Tessier,et al.  Sublimation pressure of Xe and zero temperature cohesion energy of Ar, Kr and Xe from sublimation pressure and heat capacity data , 1982 .

[41]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[42]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[43]  S. Zhang,et al.  Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach. , 2008, The Journal of chemical physics.