Outer‐Sphere Ionic Hydrosilylation Catalysis

Hydrosilylation reactions play a key role in modern organic synthesis thanks to the low cost and non-toxic nature of silicon reagents, together with the mild reaction conditions required and the ease for further functionalization of their reaction products. The importance of this reaction has led to an extensive study of the mechanisms involved. The great wealth of mechanistic data present in the literature seems to prove that postulation of a general catalytic cycle that comprises all cases is a difficult task. The fact that the nature of the hydrosilylation mechanism is very much dependent on the substrate, catalyst or silane employed calls for individual analysis of each particular example. In the case of the hydrosilylation of carbonyl compounds with monohydrosilanes catalyzed by late transition metal complexes, the most commonly invoked mechanism is that proposed by Ojima and co-workers (Scheme 1).

[1]  M. Kaupp,et al.  Insight into the mechanism of carbonyl hydrosilylation catalyzed by Brookhart's cationic iridium(III) pincer complex. , 2014, Journal of the American Chemical Society.

[2]  Abdullah M. Aitani,et al.  Homogeneous catalytic reduction of CO2 with hydrosilanes , 2014 .

[3]  Wenmin Wang,et al.  Theoretical Study of POCOP-Pincer Iridium(III)/Iron(II) Hydride Catalyzed Hydrosilylation of Carbonyl Compounds: Hydride Not Involved in the Iridium(III) System but Involved in the Iron(II) System , 2014 .

[4]  Francisco J. Fernández‐Alvarez,et al.  An alternative mechanistic paradigm for the β-Z hydrosilylation of terminal alkynes: the role of acetone as a silane shuttle. , 2013, Chemistry.

[5]  D. Gutsulyak,et al.  Chemo- and Regioselective Catalytic Reduction of N-Heterocycles by Silane , 2013 .

[6]  Martin Oestreich,et al.  Si-H-Bindungsaktivierung: Parallelen der Lewis-Säure-Katalyse mit Brookharts Iridium(III)-Pincerkomplex und B(C6F5)3† , 2013 .

[7]  T. Robert,et al.  Si-H bond activation: bridging Lewis acid catalysis with Brookhart's iridium(III) pincer complex and B(C6F5)3. , 2013, Angewandte Chemie.

[8]  Jennifer J. Becker,et al.  Iridium-catalyzed hydrosilylative reduction of glucose to hexane(s). , 2013, Journal of the American Chemical Society.

[9]  R. Crabtree,et al.  Outer sphere hydrogenation catalysis , 2013 .

[10]  R. Lalrempuia,et al.  Effective fixation of CO2 by iridium-catalyzed hydrosilylation. , 2012, Angewandte Chemie.

[11]  M. Brookhart,et al.  Development and mechanistic investigation of a highly efficient iridium(V) silyl complex for the reduction of tertiary amides to amines. , 2012, Journal of the American Chemical Society.

[12]  M. Brookhart,et al.  Hydrosilylation of epoxides catalyzed by a cationic η1-silane iridium(III) complex. , 2011, Chemical communications.

[13]  D. Gutsulyak,et al.  Facile catalytic hydrosilylation of pyridines. , 2011, Angewandte Chemie.

[14]  M. Brookhart,et al.  Hydrosilation of Carbonyl-Containing Substrates Catalyzed by an Electrophilic η-Silane Iridium(III) Complex. , 2010, Organometallics.

[15]  D. Gutsulyak,et al.  Chemoselective catalytic hydrosilylation of nitriles. , 2010, Angewandte Chemie.

[16]  D. Gutsulyak,et al.  Cationic silane sigma-complexes of ruthenium with relevance to catalysis. , 2010, Journal of the American Chemical Society.

[17]  M. Brookhart,et al.  Reduction of Alkyl Halides by Triethylsilane Based on a Cationic Iridium Bis(phosphinite) Pincer Catalyst: Scope, Selectivity and Mechanism , 2009 .

[18]  P. White,et al.  Scope and mechanism of the iridium-catalyzed cleavage of alkyl ethers with triethylsilane. , 2008, Journal of the American Chemical Society.

[19]  Martin Oestreich,et al.  Schlüssiger Nachweis eines SN2‐Si‐Mechanismus in der B(C6F5)3‐ katalysierten Hydrosilylierung von Carbonylverbindungen: Einsichten in die verwandte Hydrierung , 2008 .

[20]  M. Oestreich,et al.  Conclusive evidence for an S(N)2-Si mechanism in the B(C6F5)3-catalyzed hydrosilylation of carbonyl compounds: implications for the related hydrogenation. , 2008, Angewandte Chemie.

[21]  P. White,et al.  Structural and spectroscopic characterization of an unprecedented cationic transition-metal eta1-silane complex. , 2008, Angewandte Chemie.

[22]  M. Brookhart,et al.  Iridium-catalyzed reduction of alkyl halides by triethylsilane. , 2007, Journal of the American Chemical Society.

[23]  A. K. Roy A Review of Recent Progress in Catalyzed Homogeneous Hydrosilation (Hydrosilylation) , 2007 .

[24]  R Morris Bullock,et al.  Catalytic ionic hydrogenations. , 2004, Chemistry.

[25]  R. Bullock,et al.  A recyclable catalyst that precipitates at the end of the reaction , 2003, Nature.

[26]  R. Noyori Asymmetrische Katalyse: Kenntnisstand und Perspektiven (Nobel-Vortrag) Copyright© The Nobel Foundation 2002. – Wir danken der Nobel-Stiftung, Stockholm, für die Genehmigung zum Druck einer deutschen Fassung des Vortrags. , 2002 .

[27]  Ryoji Noyori,et al.  Asymmetric catalysis: science and opportunities (Nobel lecture). , 2002, Angewandte Chemie.

[28]  Piers,et al.  Studies on the mechanism of B(C(6)F(5))(3)-catalyzed hydrosilation of carbonyl functions , 2000, The Journal of organic chemistry.

[29]  W. Piers,et al.  Tris(pentafluorophenyl)boron-Catalyzed Hydrosilation of Aromatic Aldehydes, Ketones, and Esters , 1996 .

[30]  Yitzhak Apeloig,et al.  The chemistry of organic silicon compounds , 1989 .

[31]  I. Ojima,et al.  Reduction of carbonyl compounds via hydrosilylation , 1975 .

[32]  A. Chalk,et al.  Homogeneous Catalysis. II. The Mechanism of the Hydrosilation of Olefins Catalyzed by Group VIII Metal Complexes1 , 1965 .