Hybrid processing systems—An assessment

The potential of hybrid processing systems is reviewed. The specific systems discussed involve the combination of coherent optical, electrooptical, electronic, and digital subsystems. In particular, progress in diffraction-pattern analysis is reviewed when the diffraction pattern is produced optically, detected, and then operated on electronically. The second type of system is the optical processing system, in which the diffraction pattern is appropriately changed to produce a modified image of the original input. Input transducers, addressable filters, and detection and logic subsystems are key elements of these systems.

[1]  P. Nisenson,et al.  Imaging Characteristics of the Itek PROM. , 1974, Applied optics.

[2]  Niels Jensen,et al.  Photogrammetric Uses Of The Optical Power Spectrum , 1974, Other Conferences.

[3]  S Iwasa Optical processing: a near real-time coherent system using two Itek PROM devices. , 1976, Applied optics.

[4]  J. Genthe,et al.  Thick Epitaxial Films of Cubic ZnSe and ZnS by Vapor Phase Transport , 1971 .

[5]  Jan Grinberg,et al.  A new real-time non-coherent to coherent light image converter - The hybrid field effect liquid crystal light valve , 1975 .

[6]  George G. Lendaris,et al.  Diffraction-pattern sampling for automatic pattern recognition , 1970 .

[7]  R E Beissner,et al.  Counting and classifying small objects by far-field light scattering. , 1971, Applied optics.

[8]  D. S. Oliver,et al.  POCKELS READOUT OPTICAL MEMORY USING Bi12SiO20 , 1971 .

[9]  N. Sheridon,et al.  The Ruticon family of erasable image recording devices , 1972 .

[10]  P Nisenson,et al.  Real Time Optical Processing with Bi(12)SiO(20), PROM. , 1972, Applied optics.

[11]  W. L. Wilcock,et al.  Light scattering measurements of particle distributions. , 1976, Applied optics.

[12]  Brian J. Thompson,et al.  The Information Content of Optical Diffraction Patterns , 1976 .

[13]  W. P. Bleha,et al.  ac liquid‐crystal light valve , 1973 .

[14]  F. Parsons,et al.  Simplified Two-Dimensional Microdensitometry , 1964, Nature.

[15]  P. Nisenson,et al.  Real-Time Optical Processing , 1974, Other Conferences.

[16]  J. Genthe,et al.  Vacuum deposition of epitaxial ZnSe on GaAs , 1971 .

[17]  D. S. Oliver,et al.  Reusable optical image storage and processing device. , 1972, Applied optics.

[18]  P. Nisenson,et al.  Real-time incoherent-to-coherent optical converter , 1973 .

[19]  David Casasent A Hybrid Digital/Optical Computer System , 1973, IEEE Transactions on Computers.

[20]  George E. Lukes Cloud Screening From Aerial Photography Applying Coherent Optical Pattern Recognition Techniques , 1974, Other Conferences.

[21]  R. B. Lauer,et al.  Transport processes of photoinduced carriers in Bi12SiO20 , 1973 .

[22]  R. E. Aldrich,et al.  Electrical and Optical Properties of Bi12SiO20 , 1971 .

[23]  D. Sand,et al.  A real-time electrooptical fourier transform system for video images , 1973 .

[24]  B. Thompson The Three-dimensional Intensity Distribution near the Focus of Waves Diffracted by Slit and Rectangular Apertures , 1959 .

[25]  W. P. Bleha,et al.  The liquid crystal light valve, an optical-to-optical interface device , 1973, Pattern Recognit..

[26]  D. S. Oliver,et al.  IMAGE STORAGE AND OPTICAL READOUT IN A ZnS DEVICE , 1970 .

[27]  P. Vohl A technique for vapor phase growth of zinc selenide , 1969 .

[28]  Brian J. Thompson Multiple-Beam Interference with Partially Coherent Light* , 1966 .

[29]  Sato Iwasa,et al.  The Prom Device In Optical Processing Systems , 1974 .

[30]  F. G. Wakim Photocurrent and Thermally Stimulated Current Excitation Spectra in Cubic ZnSe Crystals , 1970 .

[31]  David Casasent A Hybrid Image Processor , 1974 .