Heterozygous Meg2 Ablation Causes Intraocular Pressure Elevation and Progressive Glaucomatous Neurodegeneration

[1]  Manoj Kumar,et al.  INGE GRUNDKE-IQBAL AWARD FOR ALZHEIMER’S RESEARCH: NEUROTOXIC REACTIVE ASTROCYTES ARE INDUCED BY ACTIVATED MICROGLIA , 2019, Alzheimer's & Dementia.

[2]  J. den Hertog,et al.  Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease. , 2017, Developmental biology.

[3]  Xianjun Zhu,et al.  Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective , 2017, Proceedings of the National Academy of Sciences.

[4]  G. MacGregor,et al.  Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain , 2017, Journal of Neuroinflammation.

[5]  S. Joachim,et al.  Ischemic injury leads to extracellular matrix alterations in retina and optic nerve , 2017, Scientific Reports.

[6]  Z. Zhao,et al.  The Protein Tyrosine Phosphatase MEG2 Regulates the Transport and Signal Transduction of Tropomyosin Receptor Kinase A* , 2016, The Journal of Biological Chemistry.

[7]  S. Joachim,et al.  Early remodelling of the extracellular matrix proteins tenascin‐C and phosphacan in retina and optic nerve of an experimental autoimmune glaucoma model , 2016, Journal of cellular and molecular medicine.

[8]  S. Joachim,et al.  Simultaneous Complement Response via Lectin Pathway in Retina and Optic Nerve in an Experimental Autoimmune Glaucoma Model , 2016, Front. Cell. Neurosci..

[9]  J. Salazar,et al.  Retinal Macroglial Responses in Health and Disease , 2016, BioMed research international.

[10]  James R. Tribble,et al.  Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma , 2016, Molecular Neurodegeneration.

[11]  S. John,et al.  C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury , 2016, Molecular Neurodegeneration.

[12]  J. Danias,et al.  Differential Effects of C1qa Ablation on Glaucomatous Damage in Two Sexes in DBA/2NNia Mice , 2015, PloS one.

[13]  E. Tamm,et al.  The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[14]  Y. Zhuo,et al.  HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma , 2015, Journal of Neuroinflammation.

[15]  C. Ehlken,et al.  Increased Expression of Angiogenic and Inflammatory Proteins in the Vitreous of Patients with Ischemic Central Retinal Vein Occlusion , 2015, PloS one.

[16]  M. Shibuya,et al.  Erratum to: The guanine nucleotide exchange factor Vav3 regulates differentiation of progenitor cells in the developing mouse retina , 2015, Cell and Tissue Research.

[17]  T. Langmann,et al.  Retinal microglia: Just bystander or target for therapy? , 2015, Progress in Retinal and Eye Research.

[18]  Duane D. Miller,et al.  Insulin-like growth factor-1 binding protein 3 (IGFBP-3) promotes recovery from trauma-induced expression of inflammatory and apoptotic factors in retina. , 2014, Cytokine.

[19]  T. Wong,et al.  Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. , 2014, Ophthalmology.

[20]  T. Langmann,et al.  Early-onset autosomal recessive cerebellar ataxia associated with retinal dystrophy: new human hotfoot phenotype caused by homozygous GRID2 deletion , 2014, Genetics in Medicine.

[21]  N. Brecha,et al.  Loss of outer retinal neurons and circuitry alterations in the DBA/2J mouse. , 2014, Investigative ophthalmology & visual science.

[22]  S. Joachim,et al.  Loss of inner retinal neurons after retinal ischemia in rats. , 2014, Investigative ophthalmology & visual science.

[23]  J. Steinle,et al.  Intravitreal Injection of IGFBP-3 Restores Normal Insulin Signaling in Diabetic Rat Retina , 2014, PloS one.

[24]  Richard S. Smith,et al.  Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice , 2013, Journal of Neuroinflammation.

[25]  C. Print,et al.  Zinc Finger Nuclease Mediated Knockout of ADP-Dependent Glucokinase in Cancer Cell Lines: Effects on Cell Survival and Mitochondrial Oxidative Metabolism , 2013, PloS one.

[26]  C. R. Yates,et al.  Insulin-like growth factor binding protein-3 inhibits monocyte adhesion to retinal endothelial cells in high glucose conditions , 2013, Molecular vision.

[27]  G. Tezel Immune regulation toward immunomodulation for neuroprotection in glaucoma. , 2013, Current opinion in pharmacology.

[28]  P. Grudnik,et al.  T cell activation is driven by an ADP-dependent glucokinase linking enhanced glycolysis with mitochondrial reactive oxygen species generation. , 2012, Cell reports.

[29]  T. Keenan,et al.  Mapping the differential distribution of proteoglycan core proteins in the adult human retina, choroid, and sclera. , 2012, Investigative ophthalmology & visual science.

[30]  S. John,et al.  Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. , 2012, Annual review of neuroscience.

[31]  R. Nickells The cell and molecular biology of glaucoma: mechanisms of retinal ganglion cell death. , 2012, Investigative ophthalmology & visual science.

[32]  B. Morquette,et al.  The molecular basis of retinal ganglion cell death in glaucoma , 2012, Progress in Retinal and Eye Research.

[33]  P. Wiedemann,et al.  Müller Glial Cells in Retinal Disease , 2011, Ophthalmologica.

[34]  Mei Chen,et al.  Complement gene expression and regulation in mouse retina and retinal pigment epithelium/choroid , 2011, Molecular vision.

[35]  P. Bora,et al.  Complement mediated apoptosis leads to the loss of retinal ganglion cells in animal model of glaucoma. , 2011, Molecular immunology.

[36]  Matthew A. Hibbs,et al.  Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. , 2011, The Journal of clinical investigation.

[37]  O. Witte,et al.  Regulated expression of microRNAs-126/126* inhibits erythropoiesis from human embryonic stem cells. , 2011, Blood.

[38]  Guochun Chen,et al.  Optic neuropathy due to microbead-induced elevated intraocular pressure in the mouse. , 2011, Investigative ophthalmology & visual science.

[39]  P. Heiduschka,et al.  Loss of retinal function in aged DBA/2J mice - New insights into retinal neurodegeneration. , 2010, Experimental eye research.

[40]  H. Kaplan,et al.  Oxidative stress and the regulation of complement activation in human glaucoma. , 2010, Investigative ophthalmology & visual science.

[41]  T. Langmann,et al.  Microglia in the healthy and degenerating retina: insights from novel mouse models. , 2010, Immunobiology.

[42]  H. Quigley,et al.  Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss , 2010, Glia.

[43]  Masahiko Watanabe,et al.  VAV2 and VAV3 as Candidate Disease Genes for Spontaneous Glaucoma in Mice and Humans , 2010, PloS one.

[44]  A. Ullrich,et al.  Protein tyrosine phosphatases expression during development of mouse superior colliculus , 2009, Experimental Brain Research.

[45]  M. Vidal-Sanz,et al.  Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. , 2009, Investigative ophthalmology & visual science.

[46]  J. Morrison,et al.  Friend or foe? Resolving the impact of glial responses in glaucoma. , 2009, Journal of glaucoma.

[47]  C. L. Schlamp,et al.  Mouse models of retinal ganglion cell death and glaucoma. , 2009, Experimental eye research.

[48]  G. Tezel The role of glia, mitochondria, and the immune system in glaucoma. , 2009, Investigative ophthalmology & visual science.

[49]  D. Badcock,et al.  Spatial summation properties for magnocellular and parvocellular pathways in glaucoma. , 2009, Investigative ophthalmology & visual science.

[50]  Young H. Kwon,et al.  Disruption of the complement cascade delays retinal ganglion cell death following retinal ischemia-reperfusion. , 2008, Experimental eye research.

[51]  C. McMaster,et al.  Structure and function of the enigmatic Sec14 domain-containing proteins and the etiology of human disease , 2008 .

[52]  M. Cordeiro,et al.  Neuroprotection in Glaucoma: Drug-Based Approaches , 2008, Optometry and vision science : official publication of the American Academy of Optometry.

[53]  C. Distler,et al.  Receptor protein tyrosine phosphatases are expressed by cycling retinal progenitor cells and involved in neuronal development of mouse retina , 2008, Neuroscience.

[54]  John D. Lambris,et al.  The Classical Complement Cascade Mediates CNS Synapse Elimination , 2007, Cell.

[55]  V. Porciatti,et al.  IOP-dependent retinal ganglion cell dysfunction in glaucomatous DBA/2J mice. , 2007, Investigative ophthalmology & visual science.

[56]  Abbot F Clark,et al.  Rodent Models for Glaucoma Retinopathy and Optic Neuropathy , 2007, Journal of glaucoma.

[57]  P. Horner,et al.  Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma , 2007, Glia.

[58]  T. Langmann Microglia activation in retinal degeneration , 2007, Journal of leukocyte biology.

[59]  T. Mustelin,et al.  Association of Protein-tyrosine Phosphatase MEG2 via Its Sec14p Homology Domain with Vesicle-trafficking Proteins* , 2007, Journal of Biological Chemistry.

[60]  E. Wawrousek,et al.  Expression of Mutated Mouse Myocilin Induces Open-Angle Glaucoma in Transgenic Mice , 2006, The Journal of Neuroscience.

[61]  N. Tonks,et al.  Protein tyrosine phosphatases: from genes, to function, to disease , 2006, Nature Reviews Molecular Cell Biology.

[62]  C. L. Schlamp,et al.  Decrease of cone opsin mRNA in experimental ocular hypertension. , 2006, Molecular vision.

[63]  Young H. Kwon,et al.  Retinal synthesis and deposition of complement components induced by ocular hypertension. , 2006, Experimental eye research.

[64]  Elena Vecino,et al.  Three experimental glaucoma models in rats: comparison of the effects of intraocular pressure elevation on retinal ganglion cell size and death. , 2006, Experimental eye research.

[65]  J. Danias,et al.  Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. , 2006, Investigative ophthalmology & visual science.

[66]  C. McKerlie,et al.  Tyrosine phosphatase MEG2 modulates murine development and platelet and lymphocyte activation through secretory vesicle function , 2005, The Journal of experimental medicine.

[67]  C. O'brien,et al.  Transforming growth factor-beta-regulated gene transcription and protein expression in human GFAP-negative lamina cribrosa cells. , 2005, Glia.

[68]  R. Masland,et al.  Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice , 2005, The Journal of cell biology.

[69]  Ruaidhrí P Kirwan,et al.  Influence of cyclical mechanical strain on extracellular matrix gene expression in human lamina cribrosa cells in vitro. , 2005, Molecular vision.

[70]  Michael G. Anderson,et al.  Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. , 2005, Visual neuroscience.

[71]  R. Weinreb,et al.  The importance of models in glaucoma research. , 2005, Journal of glaucoma.

[72]  Makoto Nakamura,et al.  Long-term glial reactivity in rat retinas ipsilateral and contralateral to experimental glaucoma. , 2005, Experimental eye research.

[73]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[74]  Li Guo,et al.  Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[75]  N. Bottini,et al.  Control of vesicle fusion by a tyrosine phosphatase , 2004, Nature Cell Biology.

[76]  E. Woldemussie,et al.  Müller cell response to laser‐induced increase in intraocular pressure in rats , 2004, Glia.

[77]  Joanna M. Sasin,et al.  Protein Tyrosine Phosphatases in the Human Genome , 2004, Cell.

[78]  K. Brown,et al.  Microarray analysis of changes in mRNA levels in the rat retina after experimental elevation of intraocular pressure. , 2004, Investigative ophthalmology & visual science.

[79]  M. Wax,et al.  The immune system and glaucoma , 2004, Current opinion in ophthalmology.

[80]  A. Godzik,et al.  Homotypic Secretory Vesicle Fusion Induced by the Protein Tyrosine Phosphatase MEG2 Depends on Polyphosphoinositides in T Cells1 , 2003, The Journal of Immunology.

[81]  Z. Zhao,et al.  PTP-MEG2 is activated in polycythemia vera erythroid progenitor cells and is required for growth and expansion of erythroid cells. , 2003, Blood.

[82]  T. Filippopoulos,et al.  Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57/BL6 mice. , 2003, Investigative ophthalmology & visual science.

[83]  P. Lombroso,et al.  Receptor and nonreceptor protein tyrosine phosphatases in the nervous system , 2003, Cellular and Molecular Life Sciences CMLS.

[84]  F. Gage,et al.  Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[85]  P. Kaufman,et al.  Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma , 2003, Progress in Retinal and Eye Research.

[86]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[87]  David Zurakowski,et al.  Effects of anti-glaucoma medications on gangion cell survival: the DBA/2J mouse model , 2002, Vision Research.

[88]  J E Morgan,et al.  Retinal ganglion cell shrinkage in glaucoma. , 2002, Journal of glaucoma.

[89]  G. Horgan,et al.  Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR , 2002 .

[90]  F. Horn,et al.  The a-wave of the dark adapted electroretinogram in glaucomas: are photoreceptors affected? , 2001, The British journal of ophthalmology.

[91]  K. Reid,et al.  C1q: structure, function, and receptors. , 2000, Immunopharmacology.

[92]  Hideya Uchida,et al.  Retinal ganglion cell death in experimental glaucoma , 2000, The British journal of ophthalmology.

[93]  J. Morrison,et al.  Chronology of optic nerve head and retinal responses to elevated intraocular pressure. , 2000, Investigative ophthalmology & visual science.

[94]  S. John,et al.  Mouse genetics: a tool to help unlock the mechanisms of glaucoma. , 1999, Journal of glaucoma.

[95]  J. Hertog Protein-tyrosine phosphatases in development , 1999, Mechanisms of Development.

[96]  H. Quigley,et al.  Neuronal death in glaucoma , 1999, Progress in Retinal and Eye Research.

[97]  T H Roderick,et al.  Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. , 1998, Investigative ophthalmology & visual science.

[98]  S. Sharma,et al.  The patterns of retinal ganglion cell death in hypertensive eyes , 1998, Brain Research.

[99]  S. Lipton,et al.  Molecular basis of glutamate toxicity in retinal ganglion cells , 1997, Vision Research.

[100]  R. Strom,et al.  Genetic and Environmental Control of Variation in Retinal Ganglion Cell Number in Mice , 1996, The Journal of Neuroscience.

[101]  B. Neel,et al.  From Form to Function: Signaling by Protein Tyrosine Phosphatases , 1996, Cell.

[102]  J. Nathans,et al.  Molecular biology of retinal ganglion cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[103]  P. Majerus,et al.  Cloning and expression of a cytosolic megakaryocyte protein-tyrosine-phosphatase with sequence homology to retinaldehyde-binding protein and yeast SEC14p. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[104]  G. Dunkelberger,et al.  Chronic glaucoma selectively damages large optic nerve fibers. , 1987, Investigative ophthalmology & visual science.

[105]  A. Stoker RPTPs in axons, synapses and neurology. , 2015, Seminars in cell & developmental biology.

[106]  M. Shibuya,et al.  The guanine nucleotide exchange factor Vav3 regulates differentiation of progenitor cells in the developing mouse retina , 2014, Cell and Tissue Research.

[107]  S. Ali,et al.  Spatiotemporal distribution of chondroitin sulfate proteoglycans in the developing mouse retina and optic nerve. , 2011, The Journal of veterinary medical science.

[108]  S. Hardy,et al.  Inside the human cancer tyrosine phosphatome , 2010, Nature Reviews Cancer.

[109]  J. Danias,et al.  A role for complement in glaucoma? , 2010, Advances in experimental medicine and biology.

[110]  Nunzio Bottini,et al.  Protein tyrosine phosphatases and the immune response , 2005, Nature Reviews Immunology.

[111]  M. Rogalińska Alterations in cell nuclei during apoptosis. , 2002, Cellular & molecular biology letters.