Gamma-ray binaries : pulsars in disguise?

Context. LS 5039 and LS I+61°303 are unique amongst high-mass X-ray binaries (HMXB) for their spatially-resolved radio emission and their counterpart at >GeV gamma-ray energies, canonically attributed to non-thermal particles in an accretion-powered relativistic jet. The only other HMXB known to emit very high-energy (VHE) gamma-rays, PSR B1259-63, harbours a non-accreting millisecond pulsar. Aims. The purpose is to investigate whether the interaction of the relativistic wind from a young pulsar with the wind from its stellar companion, as in PSR B1259-63, constitutes a viable scenario for explaining the observations of LS 5039 and LS I+61°303. Emission arises from the shocked pulsar wind material, which then flows away to large distances in a comet-shape tail, reproducing on a smaller scale what is observed in isolated, high motion pulsars interacting with the interstellar medium. Methods. The timescales for acceleration and radiation of particles at the shock between the pulsar wind and stellar wind are calculated. Simple expectations for the spectral energy distribution (SED) are derived and are shown to depend on very few input parameters. Detailed modelling of the particle evolution is attempted and compared to the observations from radio to TeV energies. Results. Acceleration at the shock provides high-energy electrons that steadily emit synchrotron in X-rays and inverse Compton scatter stellar light to γ -rays. Electrons streaming out of the system emit at IR frequencies and below. The overall aspect of the SEDs is adequately reproduced for standard values of the parameters. The morphology of the radio tail can mimic a microquasar jet. Good agreement is found with the published VLBI map of LS 5039 and predictions are made on the expected change in appearance with orbital phase. Conclusions. The pulsar wind scenario provides a common, viable framework for interpreting the emission from all three γ -ray binaries.

[1]  V. Bosch-Ramon,et al.  Spectral energy distribution of the γ-ray microquasar LS 5039 , 2006 .

[2]  J. Spyromilio,et al.  Radio and optical observations of the PSR B1259–63/SS 2883 Be star binary system , 1994 .

[3]  D. Frail,et al.  Extended emission around the variable radio star LSI +61 deg 303 , 1987 .

[4]  C. Hoffman,et al.  Gamma-ray astronomy at high energies , 1999 .

[5]  Theory of high-energy emission from the pulsar/Be star system PSR 1259-63. I. Radiation mechanisms and interaction geometry , 1996, astro-ph/9609086.

[6]  D. Leahy,et al.  The ASCA X-Ray Spectrum of the Unusual Binary LSI +61°303 , 1997 .

[7]  U. Barcelona,et al.  Hints for a fast precessing relativistic radio jet in LS I + 61° 303 , 2003, astro-ph/0312091.

[8]  T. Weekes,et al.  A Survey of Unidentified EGRET Sources at Very High Energies , 2005 .

[9]  D. Leahy The gamma-ray source LSI +61°303: II. Multiwavelength emission model , 2004 .

[10]  J. Martí,et al.  LS 5039: A runaway microquasar ejected from the galactic plane , 2002, astro-ph/0201254.

[11]  B. Gaensler,et al.  The evolution and structure of pulsar wind nebulae , 2006, astro-ph/0601081.

[12]  R. Manchester,et al.  The 2000 periastron passage of PSR B1259–63 , 2002, astro-ph/0207302.

[13]  A. Treves,et al.  A model for LSI 61° 303 , 1981 .

[14]  B. Gaensler Bow shocks around pulsars and neutron stars , 2005, astro-ph/0501357.

[15]  N. Bucciantini,et al.  Relativistic MHD simulations of pulsar bow-shock nebulae , 2004, astro-ph/0412534.

[16]  M. F. Radioastronomie,et al.  Confirmation of persistent radio jets in the microquasar LS 5039 , 2002, astro-ph/0210550.

[17]  J. Gunn,et al.  The Origin of the Magnetic Field and Relativistic Particles in the Crab Nebula , 1974 .

[18]  F. C. Jones Calculated spectrum of inverse-Compton- scattered photons. , 1968 .

[19]  Probing pulsar winds using inverse Compton scattering , 1999, astro-ph/9908201.

[20]  I. Steele,et al.  On the radio emitting high mass X-ray binary LS 5039 , 2001 .

[21]  T. Montaruli,et al.  Microquasar LS 5039: a TeV gamma-ray emitter and a potential TeV neutrino source , 2005, astro-ph/0508658.

[22]  J. Greiner,et al.  The X-ray spectrum of LSI+61°303 , 2001, astro-ph/0105304.

[23]  B. A. Harmon,et al.  The Burst and Transient Source Experiment (BATSE) Earth Occultation Catalog of Low-Energy Gamma-Ray Sources , 2004, astro-ph/0404453.

[24]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[25]  The low X-ray state of LS 5039/RX J1826.2-1450 , 2004, astro-ph/0409608.

[26]  A. Melatos,et al.  Stellar wind and stellar disc models of dispersion and rotation measure variations in the PSR B1259 – 63/SS2883 binary system , 1995 .

[27]  C. Kennel,et al.  Confinement of the Crab pulsar's wind by its supernova remnant , 1984 .

[28]  Charles D. Dermer,et al.  Gamma Rays from Compton Scattering in the Jets of Microquasars: Application to LS 5039 , 2005, astro-ph/0512162.

[29]  L. Ball,et al.  Inverse Compton emission of TeV gamma rays from PSR B1259-63 , 1998, astro-ph/9808112.

[30]  T. Weekes,et al.  Search for TeV Emissions from Pulsars in Binary Systems , 2003 .

[31]  A. Stirling,et al.  A relativistic jet from Cygnus X-1 in the low/hard X-ray state , 2001, astro-ph/0107192.

[32]  Zhi-Yun Li,et al.  The X-ray-emitting trail of the nearby pulsar PSR1929 + 10 , 1993, Nature.

[33]  B. J. Taylor Observations of secondary spectrophotometric standards in the wavelength range between 5840 and 10800 Å. , 1979 .

[34]  T. Belloni,et al.  A Unified Model for Black Hole X-Ray Binary Jets? , 2004, astro-ph/0506469.

[35]  V. Kaspi,et al.  Regimes of high-energy shock emission from the Be star/pulsar system PSR 1259-63 , 1994 .

[36]  P. Gregory Bayesian Analysis of Radio Observations of the Be X-Ray Binary LS I +61°303 , 2002 .

[37]  A. Lyne,et al.  Period Evolution of PSR B1259-63: Evidence for Propeller-Torque Spin-down , 1995 .

[38]  J. Bahcall Masses of Neutron Stars and Black Holes in X-Ray Binaries , 1978 .

[39]  L. Ball,et al.  Radio observations of PSR B1259-63 through the 2004 periastron passage , 2005, astro-ph/0501660.

[40]  J. Arons,et al.  High-energy emission from the eclipsing millisecond pulsar PSR 1957+20 , 1993 .

[41]  Orbital parameters of the microquasar LS I +61 303 , 2005, astro-ph/0504332.

[42]  Long-term X-ray variability of the microquasar system LS 5039/RX J1826.2 1450 , 2003, astro-ph/0304343.

[43]  P. Gregory,et al.  New highly variable radio source, possible counterpart of γ-ray source CG135+1 , 1978, Nature.

[44]  P. Gregory,et al.  The radio, optical, X-ray, gamma-ray star LSI +61 deg 303 , 1979 .

[45]  M. McSwain,et al.  Wind Accretion and Binary Evolution of the Microquasar LS 5039 , 2002, astro-ph/0201457.

[46]  A possible black hole in the γ-ray microquasar LS 5039 , 2005, astro-ph/0507549.

[47]  Gamma-ray absorption in massive X-ray binaries , 2005, astro-ph/0509633.

[48]  L. Kaper,et al.  The N Enrichment and Supernova Ejection of the Runaway Microquasar LS 5039 , 2003, astro-ph/0307083.

[49]  Edinburgh,et al.  Radio emission models of colliding-wind binary systems , 2003, astro-ph/0307186.

[50]  D. Crampton,et al.  SPECTROSCOPY OF THE UNIQUE DEGENERATE BINARY STAR LS I +61 303. , 1981 .

[51]  Gustavo E. Romero,et al.  Hadronic High-Energy Gamma-Ray Emission from the Microquasar LS I +61 303 , 2005, astro-ph/0506735.

[52]  Simon Johnston,et al.  PSR 1259-63 : a binary radio pulsar with a Be star companion , 1992 .

[53]  J. Grove,et al.  Evidence for Shock Acceleration in the Binary Pulsar System PSR B1259–63 , 1995 .

[54]  A. Noutsos,et al.  Discovery of Very High Energy Gamma Rays Associated with an X-ray Binary , 2005, Science.

[55]  K. Murata,et al.  X-Ray and Gamma-Ray Emissions from the PSR 1259$-$63/Be Star System , 2003, astro-ph/0302419.

[56]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[57]  P. Gregory,et al.  Periodic radio emission from LS I +61 deg 303 , 1982 .

[58]  D. L. Bertsch,et al.  The Third EGRET Catalog of High-Energy Gamma-Ray Sources , 1998 .

[59]  C. Dermer,et al.  Submitted to The Astrophysical Journal Letters Photon-photon Absorption of Very High Energy Gamma-Rays from Microquasars: Application to LS 5039 , 2005 .

[60]  I. Steele,et al.  A Multiwavelength Investigation of the Relationship between 2CG 135+1 and LSI +61°303 , 1997, astro-ph/9711286.

[61]  U. Barcelona,et al.  One-sided jet at milliarcsecond scales in LS I +61˚ 303 , 2001, astro-ph/0107093.

[62]  J. Arons,et al.  Relativistic particle acceleration in plerions , 1994 .

[63]  R. Gould,et al.  Pair production in photon-photon collisions. , 1967 .

[64]  Origin of the transient, unpulsed radio emission from the PSR B1259-63 binary system , 1999, astro-ph/9901285.

[65]  C. Kennel,et al.  Magnetohydrodynamic model of Crab nebula radiation , 1984 .

[66]  P. Reig,et al.  Orbital X-Ray Variability of the Microquasar LS 5039 , 2005, astro-ph/0507412.

[67]  Martí,et al.  Discovery of a high-energy gamma-ray-emitting persistent microquasar , 2000, Science.

[68]  P. Gregory,et al.  Two-frequency radio spectra during an outburst of the periodic radio star LS1 +61/sup 0/303 , 1984 .

[69]  Propagation of very high energy γ‐rays inside massive binaries LS 5039 and LSI +61○ 303 , 2006, astro-ph/0601657.

[70]  G. Blumenthal,et al.  BREMSSTRAHLUNG, SYNCHROTRON RADIATION, AND COMPTON SCATTERING OF HIGH- ENERGY ELECTRONS TRAVERSING DILUTE GASES. , 1970 .

[71]  James P. Braselton,et al.  CHAPTER 9 , 2019, On Job, Volume 1.

[72]  A. Fein,et al.  Cost-effectiveness of monoclonal antibodies to gram-negative endotoxin in the treatment of gram-negative sepsis in ICU patients. , 1993, JAMA.