Disconnections and other defects associated with twin interfaces

Abstract The general topological model for interfacial defects is reviewed and expanded, and the role of these defects in the coupled shear - migration of interfaces is explored. We focus on twinning in hexagonal metals for many defect examples. The definition of shuffles within the topological model is presented. The concept of partitioning of the rotational component of elastic distortions at a grain boundary or interphase interface has recently been elucidated. This work shows that rotational coherency has an important role in twinning. The role of disconnections in type II twins is presented.

[1]  Han-Chen Huang,et al.  Novel deformation mechanism of twinned nanowires , 2006 .

[2]  G. B. Olson,et al.  Dislocation Theory of Martensitic Transformations , 1986 .

[3]  R. Gronsky,et al.  Atomic mechanisms of precipitate plate growth , 1987 .

[4]  A. Rollett,et al.  Stress hot spots in viscoplastic deformation of polycrystals , 2010 .

[5]  T. Bieler,et al.  Nucleation of paired twins at grain boundaries in titanium , 2010 .

[6]  R. Pond,et al.  Diffusive fluxes associated with interfacial defeet motion and interaction , 1997 .

[7]  K. Knowles,et al.  Type II twinning in devitrite, Na2Ca3Si6O16 , 2012 .

[8]  P. Komninou,et al.  3D modelling of misfit networks in the interface region of heterostructures , 2007 .

[9]  D. Westlake On {10.1} twinning in the h.c.p. structure☆ , 1966 .

[10]  Manson Benedict,et al.  Nuclear Chemical Engineering , 1981 .

[11]  W. Read,et al.  Dislocations in Crystals , 1953 .

[12]  C. Tomé,et al.  First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals , 2015 .

[13]  J. Hirth Dislocations, steps and disconnections at interfaces , 1994 .

[14]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[15]  J. Hirth,et al.  The effect of stress on the shape of a blocked deformation twin , 1996 .

[16]  A. Serra,et al.  Characterization of the matrix–twin interface of a (101̄2) twin during growth , 2014 .

[17]  K. Otsuka,et al.  Type II deformation twinning in γ′1 martensite in a Cu-Al-Ni alloy , 1985 .

[18]  J. Hirth,et al.  Steps, dislocations and disconnections as interface defects relating to structure and phase transformations , 1996 .

[19]  H. Kihō The Crystallographic Aspect of the Mechanical Twinning in Ti and α-U , 1958 .

[20]  R. Wasilewski Surface distortions in twinned niobium (Columbium) crystals , 1970 .

[21]  G. Ackland,et al.  Defect, surface and displacement-threshold properties of α-zirconium simulated with a many-body potential , 1995 .

[22]  A. Ostapovets,et al.  On the relationship between the “shuffling-dominated” and “shear-dominated” mechanisms for {101¯2} twinning in magnesium , 2013 .

[23]  J. Hirth,et al.  Defects at Surfaces and Interfaces , 1994 .

[24]  R. Pond On the characterisation of interfacial defects using high resolution electron microscopy , 1995 .

[25]  D. A. Smith,et al.  The crystallography of the martensitic transformation in equiatomic nickel-titanium , 1981 .

[26]  P. Komninou,et al.  Junction Line Disclinations: Characterisation and Observations , 1999 .

[27]  H. Kadiri,et al.  The roles of grain boundary dislocations and disclinations in the nucleation of {1 0 1¯ 2} twinning , 2014 .

[28]  Amit Misra,et al.  Effects of texture, temperature and strain on the deformation modes of zirconium , 2006 .

[29]  J. Narayan,et al.  Domain epitaxy: A unified paradigm for thin film growth , 2003 .

[30]  M. Finnis,et al.  The influence of grain boundary inclination on the structure and energy of Σ=3 grain boundaries in copper , 1992 .

[31]  J. D. Eshelby,et al.  The velocity of a wave along a dislocation , 1966 .

[32]  P. Ruterana,et al.  Investigation of {1012} twins in Zn using high-resolution electron microscopy: Interfacial defects and interactions , 1997 .

[33]  J.C.M. Li Disclination model of high angle grain boundaries , 1972 .

[34]  G. Chin,et al.  Formation of deformation twins in f.c.c. crystals , 1973 .

[35]  K. Ameyama,et al.  Three Dimensional Near-Coincidence Site Lattice Modeling of α/β Interface Boundary Structure in Two Phase Titanium Alloy , 2000 .

[36]  J. Howe,et al.  Comparison between the invariant line and structural ledge theories for predicting the habit plane, orientation relationship and interphase boundary structure of plate-shaped precipitates , 1992 .

[37]  J. Mackenzie,et al.  The crystallography of martensite transformations II , 1954 .

[38]  E. Ma,et al.  Terrace-like morphology of the boundary created through basal-prismatic transformation in magnesium , 2015 .

[39]  C. Tomé,et al.  On the measure of dislocation densities from diffraction line profiles: A comparison with discrete dislocation methods , 2012 .

[40]  J. Hirth Ledges and dislocations in phase transformations , 1994 .

[41]  J. Hirth Stabilization of strained multilayers by thin interlayers , 1993 .

[42]  J. Smalc-Koziorowska,et al.  The defect character of GaN growth on r-plane sapphire , 2010 .

[43]  J. Hirth,et al.  Computer simulation of extrinsic grain-boundary defects in the ∑11, 〈101〉{131} symmetric tilt boundary , 1999 .

[44]  N. Brown,et al.  An investigation of the origin and growth of annealing twins , 1963 .

[45]  M. A. Jaswon,et al.  The crystallography of deformation twinning , 1960 .

[46]  E. Ma,et al.  Atomic shuffling dominated mechanism for deformation twinning in magnesium. , 2009, Physical review letters.

[47]  Laurent Capolungo,et al.  Statistical analyses of deformation twinning in magnesium , 2010 .

[48]  N. Li,et al.  Structure and stability of Σ3 grain boundaries in face centered cubic metals , 2013 .

[49]  David Bacon,et al.  The crystallography and core structure of twinning dislocations in H.C.P. metals , 1988 .

[50]  Dan Thoma,et al.  Texture development and deformation mechanisms during uniaxial straining of U–Nb shape-memory alloys , 2005 .

[51]  Sean R. Agnew,et al.  Nonbasal deformation modes of HCP metals and alloys: Role of dislocation source and mobility , 2002 .

[52]  B. Chalmers,et al.  Multiple slip in bicrystal deformation , 1957 .

[53]  M. Dupeux,et al.  Stress calculations for interfacial extrinsic and intrinsic dislocation arrays in anisotropic two-phase media , 1980 .

[54]  J. Howe,et al.  The role of disconnections in phase transformations , 2009 .

[55]  P. G. Partridge,et al.  The accommodation around {101̄2} 〈1̄011〉 twins in magnesium , 1966 .

[56]  Jian Wang,et al.  A constitutive model of twinning and detwinning for hexagonal close packed polycrystals , 2012 .

[57]  J. Hirth,et al.  Detwinning mechanisms for growth twins in face-centered cubic metals , 2010 .

[58]  I. Beyerlein,et al.  Nucleation of elementary and twinning dislocations at a twin boundary in hexagonal close-packed crystals , 2012 .

[59]  Freund Thin Film Materials , 2004 .

[60]  F. Ernst,et al.  Quantitative high-resolution transmission electron microscopy of the incoherent Σ3 (211) boundary in Cu , 1994 .

[61]  W. Bollmann,et al.  Crystal Defects and Crystalline Interfaces , 1970 .

[62]  T. Karakostas,et al.  The defect character of interface junction lines , 1997 .

[63]  A. G. Crocker,et al.  A computer simulation study of the structure of twinning dislocations in body centred cubic metals , 1977 .

[64]  J. Howe,et al.  HRTEM study of the {252}γ austenite-martensite interface in an Fe - 8Cr-1C alloy , 1989 .

[65]  Michael F. Ashby,et al.  The structure of grain boundaries described as a packing of polyhedra , 1978 .

[66]  Q. Liu,et al.  Interfacial structure of {101‾2} twin tip in deformed magnesium alloy , 2014 .

[67]  Yanyao Jiang,et al.  Twin–twin interactions in magnesium , 2014 .

[68]  A. Sleeswyk Emissary dislocations: Theory and experiments on the propagation of deformation twins in α-iron , 1962 .

[69]  U. F. Kocks,et al.  A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable , 1988 .

[70]  J. Hirth,et al.  Shear response of Σ3{112} twin boundaries in face-centered-cubic metals , 2011 .

[71]  V. Vítek,et al.  Periodic grain boundary structures in aluminium I. A combined experimental and theoretical investigation of coincidence grain boundary structure in aluminium , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[72]  A. Serra,et al.  Dislocations in interfaces in the H.C.P. metals : II. Mechanisms of defect mobility under stress , 1999 .

[73]  John A. Basinger,et al.  High Resolution EBSD-Based Dislocation Microscopy , 2011 .

[74]  C. Klein,et al.  Manual of mineralogy , 1864 .

[75]  X. Y. Zhang,et al.  Global strain generated by shuffling-dominated {101¯2} twinning , 2014 .

[76]  T. Bieler,et al.  In Situ Characterization of Twin Nucleation in Pure Ti Using 3D-XRD , 2013, Metallurgical and Materials Transactions A.

[77]  Wen-Zheng Zhang Decomposition of the transformation displacement field , 1998 .

[78]  A. Serra,et al.  Comment on "Atomic shuffling dominated mechanism for deformation twinning in magnesium". , 2010, Physical review letters.

[79]  A. Serra,et al.  Atomic shearing and shuffling accompanying the motion of twinning disconnections in Zirconium , 2013 .

[80]  A. Serra,et al.  Twins as barriers to basal slip in hexagonal-close-packed metals , 2002 .

[81]  W. Bollmann,et al.  Partial secondary dislocations in germanium grain boundaries , 1981 .

[82]  B. Bilby,et al.  Continuous Distributions of Dislocations: Surface Dislocations and the Crystallography of Martensitic Transformations , 1956 .

[83]  J. Hirth,et al.  Disclination Structures in Bloch Wall Lattices in BaFe12O19 and SmCo5 , 1970 .

[84]  J. Christian,et al.  The theory of transformations in metals and alloys , 2003 .

[85]  G. Proust,et al.  Modeling texture, twinning and hardening evolution during deformation of hexagonal materials , 2007 .

[86]  Jian Wang,et al.  Nucleation of a (1¯012) twin in hexagonal close-packed crystals , 2009 .

[87]  H. Kadiri,et al.  Impact of deformation faceting on {101¯2},{101¯1} and {101¯3} embryonic twin nucleation in hexagonal close-packed metals , 2014 .

[88]  Yong Liu,et al.  HRTEM study of ⟨011⟩ type II twin in NiTi shape memory alloy , 2004 .

[89]  X. Zhang,et al.  Observations on the intersection between 101̅2 twin variants sharing the same zone axis in deformed magnesium alloy , 2015 .

[90]  I. Beyerlein,et al.  Twinning dislocations on {1¯011} and {1¯013} planes in hexagonal close-packed crystals , 2011 .

[91]  I. Beyerlein,et al.  An atomic and probabilistic perspective on twin nucleation in Mg , 2010 .

[92]  Sidney Yip,et al.  Chapter 64 – Dislocation Core Effects on Mobility , 2004 .

[93]  Jagdish Narayan,et al.  Recent progress in thin film epitaxy across the misfit scale (2011 Acta Gold Medal Paper) , 2013 .

[94]  Z. M. Wang,et al.  Titanium alloys and their machinability—a review , 1997 .

[95]  J. Christian Crystallographic theories, interface structures, and transformation mechanisms , 1994 .

[96]  E. Hornbogen,et al.  Der mechanismus des korngrenzengleitens , 1968 .

[97]  S. Amelinckx,et al.  The Structure and Properties of Grain Boundaries , 1959 .

[98]  R. Lebensohn N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform , 2001 .

[99]  X. Fang,et al.  Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries , 2013, Science.

[100]  X. Liao,et al.  Deformation twins in pure titanium processed by equal channel angular pressing , 2003 .

[101]  H. J. Yang,et al.  Cyclic deformation behavior of as-extruded Mg–3%Al–1%Zn , 2008 .

[102]  Gwénaëlle Proust,et al.  Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31 , 2009 .

[103]  D. Hull The initiation of slip at the tip of a deformation twin in α-iron , 1961 .

[104]  J. Hirth,et al.  Strains and rotations in thin deposited films , 2010 .

[105]  B. Pond Topological Modelling of Martensitic Transformations , 2004 .

[106]  J. Hirth,et al.  Twinning dislocation multiplication at a coherent twin boundary , 2011 .

[107]  P. Houtte,et al.  Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning , 1978 .

[108]  Jian Wang,et al.  Twinning and De-twinning via Glide and Climb of Twinning Dislocations along Serrated Coherent Twin Boundaries in Hexagonal-close-packed Metals , 2013 .

[109]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[110]  K. Knowles,et al.  Molecular dynamics simulation of albite twinning and pericline twinning in low albite , 2013 .

[111]  J. W. Matthews,et al.  Defects in epitaxial multilayers: II. Dislocation pile-ups, threading dislocations, slip lines and cracks , 1975 .

[112]  I. Beyerlein,et al.  Reactions of lattice dislocations with grain boundaries in Mg: Implications on the micro scale from atomic-scale calculations , 2014 .

[113]  D. Cherns,et al.  Surface structure and the origin of 14 〈111〉 interfacial dislocations in NiSi2Si epitaxial films , 1985 .

[114]  W. Bollmann,et al.  The symmetry and interfacial structure of bicrystals , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[115]  Lu Lu,et al.  Twinning-like lattice reorientation without a crystallographic twinning plane , 2014, Nature Communications.

[116]  L. Rémy Twin-slip interaction in f.c.c. crystals , 1977 .

[117]  H. Aaronson,et al.  Sequences of precipitate nucleation , 1975 .

[118]  P. Pirouz,et al.  Synchroshear transformations in Laves phases , 1993 .

[119]  W.-Z. Zhang,et al.  Identification of singular interfaces with Δgs and its basis of the O-lattice , 2011 .

[120]  Xiaolei Wu,et al.  Deformation twinning in nanocrystalline materials , 2012 .

[121]  Merkle,et al.  Grain-boundary dissociation by the emission of stacking faults. , 1996, Physical review. B, Condensed matter.

[122]  T. Bieler,et al.  Study of $$ \{ 11\bar{2} 1\} $$ Twinning in α-Ti by EBSD and Laue Microdiffraction , 2013 .

[123]  S. Kalidindi Incorporation of deformation twinning in crystal plasticity models , 1998 .

[124]  R. Cahn,et al.  Plastic deformation of alpha-uranium; twinning and slip , 1953 .

[125]  R. Patterson,et al.  The crystallography and growth of partially-twinned martensite plates in Fe-Ni alloys , 1966 .

[126]  Laurent Capolungo,et al.  Nucleation and growth of twins in Zr: A statistical study , 2009 .

[127]  R. Dewit Theory of Disclinations: II. Continuous and Discrete Disclinations in Anisotropic Elasticity. , 1973, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[128]  H. Van Swygenhoven,et al.  Stacking fault energies and slip in nanocrystalline metals , 2004, Nature materials.

[129]  I. Beyerlein,et al.  Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals , 2012 .

[130]  Yanjun Li,et al.  Faceted interfacial structure of {1011} twins in Ti formed during equal channel angular pressing , 2010 .

[131]  H. Aaronson Mechanisms of the massive transformation , 2002 .

[132]  B. Bilby,et al.  The theory of the crystallography of deformation twinning , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[133]  G. B. Olson,et al.  A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation , 1976 .

[134]  F. C. Frank,et al.  LXXXIII. Crystal dislocations.—Elementary concepts and definitions , 1951 .

[135]  J. Hirth,et al.  On grain boundary dislocations and ledges , 1973 .

[136]  C. A. Verbraak,et al.  Incorporation of slip dislocations in mechanical twins—I , 1961 .

[137]  A. Serra,et al.  A new model for {1012} twin growth in hcp metals , 1996 .

[138]  S. Iijima Fine Particles of Silicon. II. Decahedral Multiply-Twinned Particles , 1987 .

[139]  F. C. Frank,et al.  One-dimensional dislocations. I. Static theory , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[140]  A. Dubertret,et al.  A development of Kronberg's model for {1012} twins in H.C.P. metals. Extension to {1122} twins , 1979 .

[141]  H. Zbib,et al.  Modeling and analysis of disconnections in tilt walls , 2008 .

[142]  J. Lothe,et al.  Disconnections in tilt walls , 2006 .

[143]  J. Hirth,et al.  Compatibility and accommodation in displacive phase transformations , 2011 .

[144]  A. G. Crocker,et al.  Twinning modes in lattices , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[145]  R. W. Balluffi,et al.  Interfaces in crystalline materials , 2009 .

[146]  U. Dahmen Surface relief and the mechanism of a phase transformation , 1987 .

[147]  D. McDowell,et al.  Grain boundary dislocation sources in nanocrystalline copper , 2008 .

[148]  J. Hirth,et al.  The shape, configuration and stress field of twins and martensite plates , 1991 .

[149]  A. Bourret,et al.  In-situ high resolution observation of hydride precipitation in titanium , 1986 .

[150]  R. Gröger,et al.  Deformation due to migration of faceted twin boundaries in magnesium and cobalt , 2015 .

[151]  I. Beyerlein,et al.  Double twinning mechanisms in magnesium alloys via dissociation of lattice dislocations , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[152]  R. Bullough,et al.  Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[153]  L. Capolungo,et al.  Atomic-Scale Comparison Between Twin Growth Mechanisms in Magnesium , 2014 .

[154]  C. Tomé,et al.  Structural characterization of {101¯2} twin boundaries in cobalt , 2013 .

[155]  T. Bieler,et al.  Twin Nucleation by Slip Transfer across Grain Boundaries in Commercial Purity Titanium , 2010 .

[156]  I. Beyerlein,et al.  Pure-Shuffle Nucleation of Deformation Twins in Hexagonal-Close-Packed Metals , 2013 .

[157]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[158]  M. Hall,et al.  A history of the controversy over the roles of shear and diffusion in plate formation aboveMd and a comparison of the atomic mechanisms of these processes , 1994 .

[159]  U. F. Kocks,et al.  The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals , 1984 .

[160]  J. Howe,et al.  Determination of the atomic structure, mechanisms and kinetics of precipitate growth in solids by in situ hot-stage high-resolution transmission electron microscopy , 1995 .

[161]  P. Komninou,et al.  Interfacial dislocations at the junction lines of {211} microfacets of a twin boundary in silicon , 1998 .

[162]  C. Tomé,et al.  Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium , 2012 .

[163]  Stephen R. Niezgoda,et al.  Stochastic modeling of twin nucleation in polycrystals: An application in hexagonal close-packed metals , 2014 .

[164]  P. Liaw,et al.  Twinning–detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A , 2008 .

[165]  I. Beyerlein,et al.  A probabilistic twin nucleation model for HCP polycrystalline metals , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[166]  T. B. Massalski,et al.  The nature and role of incoherent interphase interfaces in diffusional solid-solid phase transformations , 2006 .

[167]  A. Sleeswyk Emissary dislocation-twin interactions and twin growth , 1964 .

[168]  C. M. Wayman,et al.  Introduction to the crystallography of martensitic transformations , 1964 .

[169]  P. H. Thornton Reply to discussion “On {10.1} twinning in the h.c.p. structure”☆ , 1966 .

[170]  Mohammed Cherkaoui,et al.  The effect of twin–twin interactions on the nucleation and propagation of {101¯2} twinning in magnesium , 2013 .

[171]  A. Serra,et al.  Computer simulation of the structure and mobility of twinning disclocations in H.C.P. Metals , 1991 .

[172]  J. Hirth,et al.  Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals , 2009 .

[173]  C. B. Carter,et al.  Dynamic observation of the fcc to 9r shear transformation in a copper ∑ = 3 incoherent twin boundary , 1996 .

[174]  D. Medlin,et al.  A study of the accommodation of coherency strain by interfacial defects at a grain boundary in gold , 2006 .

[175]  I. Chen,et al.  Theory and experiment of martensitic nucleation in ZrO2 containing ceramics and ferrous alloys , 1985 .

[176]  Jian Wang,et al.  (1¯012) Twinning nucleation mechanisms in hexagonal-close-packed crystals , 2009 .

[177]  C. B. Carter,et al.  Climb and glide of a/3〈111〉 dislocations in an aluminium Σ = 3 boundary , 1997 .

[178]  I. Beyerlein,et al.  A multi-scale statistical study of twinning in magnesium , 2011 .

[179]  J. C. Huang,et al.  The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy , 2007 .

[180]  J. Hirth The influence of grain boundaries on mechanical properties , 1972 .

[181]  Angus J. Wilkinson,et al.  Assessment of residual stress fields at deformation twin tips and the surrounding environments , 2016 .

[182]  Bjørn Clausen,et al.  Evolution of stress in individual grains and twins in a magnesium alloy aggregate. , 2009 .

[183]  I. Beyerlein,et al.  Atomic Structures of $$ [0\bar{1}10] $$ Symmetric Tilt Grain Boundaries in Hexagonal Close-Packed (hcp) Crystals , 2012 .

[184]  J. C. Fisher,et al.  Formation of Annealing Twins During Grain Growth , 1950 .

[185]  C. Schuman,et al.  Accommodative 101̅2 twins at high angle grain boundaries in rolled pure titanium , 2016 .

[186]  John Arthur Simmons,et al.  FUNDAMENTAL ASPECTS OF DISLOCATION THEORY. VOLUME II. Conference Held at Gaithersburg, Maryland, April 21--25, 1969. , 1970 .

[187]  R. Lebensohn,et al.  Numerical study of the stress state of a deformation twin in magnesium , 2015 .

[188]  M. V. Klassen‐Neklyudova Mechanical Twinning of Crystals , 1964 .

[189]  Q. Liu,et al.  Characterization of basal-prismatic interface of twin in deformed titanium by high-resolution transmission electron microscopy , 2015 .

[190]  Xiaolei Wu,et al.  Formation of Single and Multiple Deformation Twins in Nanocrystalline fcc Metals , 2009 .

[191]  Yanyao Jiang,et al.  Co-zone {1¯012} Twin Interaction in Magnesium Single Crystal , 2014 .

[192]  J. Hirth,et al.  Computer simulation of ledge migration under elastic interaction , 1996 .

[193]  Mark F. Horstemeyer,et al.  Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering Design with Science , 2012 .

[194]  A. Serra,et al.  The disconnection mechanism of coupled migration and shear at grain boundaries , 2012 .

[195]  J. Hirth,et al.  Interface defects, reference spaces and the Frank–Bilby equation , 2013 .

[196]  R. H. Wagoner,et al.  On the criteria for slip transmission across interfaces in polycrystals , 1992 .

[197]  B. Bilby On the mutual transformation of lattices , 1953 .

[198]  F. Phillipp,et al.  Thermally activated step motion observed by high-resolution electron microscopy at a (113) symmetric tilt grain-boundary in aluminium , 2002 .

[199]  Huamiao Wang,et al.  Modeling inelastic behavior of magnesium alloys during cyclic loading–unloading , 2013 .

[200]  R. Pond The Measurement Of Excess Volume At Grain Boundaries Using Transmission Electron Microscopy , 1979 .

[201]  M. L Kronberg,et al.  Plastic deformation of single crystals of sapphire: Basal slip and twinning , 1957 .

[202]  H. Aaronson,et al.  Mobility of structural ledges , 1997 .

[203]  Jian Wang,et al.  A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms , 2013 .

[204]  C. Tomé,et al.  Rolling-induced Face Centered Cubic Titanium in Hexagonal Close Packed Titanium at Room Temperature , 2016, Scientific Reports.

[205]  G. Friedel,et al.  Les états mésomorphes de la matière , 1922 .

[206]  M. Yoo Slip, twinning, and fracture in hexagonal close-packed metals , 1981 .

[207]  R. Bullough Deformation twinning in the diamond structure , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[208]  Yonggang Huang,et al.  A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials , 2010 .

[209]  Ricardo A. Lebensohn,et al.  A model for texture development dominated by deformation twinning: Application to zirconium alloys , 1991 .

[210]  Carlos N. Tomé,et al.  A dislocation-based constitutive law for pure Zr including temperature effects , 2008 .

[211]  I. Beyerlein,et al.  Role of twinning and slip during compressive deformation of beryllium as a function of strain rate , 2012 .

[212]  C. B. Carter,et al.  Stacking defects in the 9R phase at an incoherent twin boundary in copper , 1998 .

[213]  A. Serra,et al.  Atomic displacements accompanying deformation twinning: shears and shuffles , 2016 .

[214]  Yanyao Jiang,et al.  Twinning-Associated Boundaries in Hexagonal Close-Packed Metals , 2014 .

[215]  M. Preuss,et al.  A study of deformation twinning in a titanium alloy by X-ray diffraction contrast tomography , 2016 .

[216]  A. H. Geisler Crystallography of phase transformations , 1953 .

[217]  Yanyao Jiang,et al.  Direct observation of twinning–detwinning–retwinning on magnesium single crystal subjected to strain-controlled cyclic tension–compression in [0 0 0 1] direction , 2011 .

[218]  R. Mccabe,et al.  Characterizing the boundary lateral to the shear direction of deformation twins in magnesium , 2016, Nature Communications.

[219]  S. G. Srinivasan,et al.  New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. , 2008, Physical review letters.

[220]  Bjørn Clausen,et al.  Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg , 2008 .

[221]  A. Paxton TWINNING IN ADVANCED MATERIALS , 1994 .

[222]  G. Olson Interphase kinematics and the roles of structure and composition in solid-state transformations , 1987 .

[223]  A. Minor,et al.  Twin boundary interactions with grain boundaries investigated in pure rhenium , 2014 .

[224]  Xiaolei Wu,et al.  Dislocation–twin interactions in nanocrystalline fcc metals , 2011 .

[225]  Philip Eisenlohr,et al.  An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials , 2012 .