STDP and STDP variations with memristors for spiking neuromorphic learning systems

In this paper we review several ways of realizing asynchronous Spike-Timing-Dependent-Plasticity (STDP) using memristors as synapses. Our focus is on how to use individual memristors to implement synaptic weight multiplications, in a way such that it is not necessary to (a) introduce global synchronization and (b) to separate memristor learning phases from memristor performing phases. In the approaches described, neurons fire spikes asynchronously when they wish and memristive synapses perform computation and learn at their own pace, as it happens in biological neural systems. We distinguish between two different memristor physics, depending on whether they respond to the original “moving wall” or to the “filament creation and annihilation” models. Independent of the memristor physics, we discuss two different types of STDP rules that can be implemented with memristors: either the pure timing-based rule that takes into account the arrival time of the spikes from the pre- and the post-synaptic neurons, or a hybrid rule that takes into account only the timing of pre-synaptic spikes and the membrane potential and other state variables of the post-synaptic neuron. We show how to implement these rules in cross-bar architectures that comprise massive arrays of memristors, and we discuss applications for artificial vision.

[1]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[2]  Timothée Masquelier,et al.  Competitive STDP-Based Spike Pattern Learning , 2009, Neural Computation.

[3]  Massimo Gottardi,et al.  A 100μW 64×128-Pixel Contrast-Based Asynchronous Binary Vision Sensor for Wireless Sensor Networks , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[4]  L. Chua Memristor-The missing circuit element , 1971 .

[5]  Johannes Schemmel,et al.  Realizing biological spiking network models in a configurable wafer-scale hardware system , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[6]  Giacomo Indiveri,et al.  A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity , 2006, IEEE Transactions on Neural Networks.

[7]  T. Delbruck,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2022 .

[8]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[9]  Mark C. W. van Rossum,et al.  Stable Hebbian Learning from Spike Timing-Dependent Plasticity , 2000, The Journal of Neuroscience.

[10]  K. Obermayer,et al.  Cortical reorganization consistent with spike timing–but not correlation-dependent plasticity , 2007, Nature Neuroscience.

[11]  André van Schaik,et al.  AER EAR: A Matched Silicon Cochlea Pair With Address Event Representation Interface , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  S. Thorpe,et al.  Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains , 2008, PloS one.

[13]  Damien Querlioz,et al.  Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity , 2012, Neural Networks.

[14]  Adam Z. Stieg,et al.  Neuromorphic Atomic Switch Networks , 2012, PloS one.

[15]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[16]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[17]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[18]  Erhan Ozalevli,et al.  Reconfigurable biologically inspired visual motion systems using modular neuromorphic VLSI chips , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Tobi Delbrück,et al.  CAVIAR: A 45k Neuron, 5M Synapse, 12G Connects/s AER Hardware Sensory–Processing– Learning–Actuating System for High-Speed Visual Object Recognition and Tracking , 2009, IEEE Transactions on Neural Networks.

[20]  F. Heitger,et al.  A 100×100 pixel silicon retina for gradient extraction with steering filter capabilities and temporal output coding , 2002, IEEE J. Solid State Circuits.

[21]  Eric A. Vittoz,et al.  An integrated cortical layer for orientation enhancement , 1997 .

[22]  Damien Querlioz,et al.  Simulation of a memristor-based spiking neural network immune to device variations , 2011, The 2011 International Joint Conference on Neural Networks.

[23]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[24]  A LeonO.EtAl.Chu,et al.  Linear and nonlinear circuits , 2014 .

[25]  Walter Senn,et al.  Learning Real-World Stimuli in a Neural Network with Spike-Driven Synaptic Dynamics , 2007, Neural Computation.

[26]  N. Wu,et al.  Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. , 2006, Physical Review Letters.

[27]  Giacomo Indiveri,et al.  Modeling Selective Attention Using a Neuromorphic Analog VLSI Device , 2000, Neural Computation.

[28]  Gert Cauwenberghs,et al.  Dynamically Reconfigurable Silicon Array of Spiking Neurons With Conductance-Based Synapses , 2007, IEEE Transactions on Neural Networks.

[29]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[30]  Bernabé Linares-Barranco,et al.  A Neuromorphic Cortical-Layer Microchip for Spike-Based Event Processing Vision Systems , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Daniel D. Lee,et al.  Equilibrium properties of temporally asymmetric Hebbian plasticity. , 2000, Physical review letters.

[32]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[33]  Steve B. Furber,et al.  Implementing spike-timing-dependent plasticity on SpiNNaker neuromorphic hardware , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[34]  W. Lu,et al.  High-density Crossbar Arrays Based on a Si Memristive System , 2008 .

[35]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[36]  Giacomo Indiveri,et al.  Real-Time Classification of Complex Patterns Using Spike-Based Learning in Neuromorphic VLSI , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[37]  Eugenio Culurciello,et al.  Event-based imaging with active illumination in sensor networks , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[38]  Francesco Galluppi,et al.  A forecast-based STDP rule suitable for neuromorphic implementation , 2012, Neural Networks.

[39]  Bernabé Linares-Barranco,et al.  A Spatial Contrast Retina With On-Chip Calibration for Neuromorphic Spike-Based AER Vision Systems , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[40]  M. Poo,et al.  Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity in a Developing Retinotectal System , 2006, Neuron.

[41]  D. Feldman,et al.  Spike Timing-Dependent Synaptic Depression in the In Vivo Barrel Cortex of the Rat , 2007, The Journal of Neuroscience.

[42]  Pierre-Yves Burgi,et al.  A 128 /spl times/ 128 pixel 120 dB dynamic range vision sensor chip for image contrast and orientation extraction , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[43]  Bo Wen,et al.  A Silicon Cochlea With Active Coupling , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[44]  D. Feldman,et al.  Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex , 2000, Neuron.

[45]  Daniel Matolin,et al.  A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-Domain CDS , 2011, IEEE Journal of Solid-State Circuits.

[46]  Timothée Masquelier,et al.  Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model , 2011, Journal of Computational Neuroscience.

[47]  Amine Bermak,et al.  Pulse-Modulation Imaging—Review and Performance Analysis , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[48]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[49]  R. Sarpeshkar,et al.  An analog bionic ear processor with zero-crossing detection , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[50]  Terrence J. Sejnowski,et al.  Synaptic Learning Rules and Sparse Coding in a Model Sensory System , 2008, PLoS Comput. Biol..

[51]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[52]  Tobi Delbrück,et al.  A 128$\times$ 128 120 dB 15 $\mu$s Latency Asynchronous Temporal Contrast Vision Sensor , 2008, IEEE Journal of Solid-State Circuits.

[53]  Gregory S. Snider,et al.  Spike-timing-dependent learning in memristive nanodevices , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.

[54]  Jörg Kramer Compact Integrated Motion Sensor With Three-Pixel Interaction , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  K. Boahen,et al.  A 360-Channel Speech Preprocessor that Emulates the Cochlear Amplifier , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[56]  Bernabé Linares-Barranco,et al.  An Event-Driven Multi-Kernel Convolution Processor Module for Event-Driven Vision Sensors , 2012, IEEE Journal of Solid-State Circuits.

[57]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[58]  Bernabé Linares-Barranco,et al.  Memristance can explain Spike-Time-Dependent-Plasticity in Neural Synapses , 2009 .

[59]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[60]  Bernabé Linares-Barranco,et al.  A 32$\,\times\,$ 32 Pixel Convolution Processor Chip for Address Event Vision Sensors With 155 ns Event Latency and 20 Meps Throughput , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[61]  Christofer Toumazou,et al.  Two centuries of memristors. , 2012, Nature materials.

[62]  Tobi Delbrück,et al.  A Multichip Pulse-Based Neuromorphic Infrastructure and Its Application to a Model of Orientation Selectivity , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[63]  Raúl Rojas,et al.  Neural Networks - A Systematic Introduction , 1996 .

[64]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[65]  F. Argall Switching phenomena in titanium oxide thin films , 1968 .

[66]  C. Toumazou,et al.  A Versatile Memristor Model With Nonlinear Dopant Kinetics , 2011, IEEE Transactions on Electron Devices.

[67]  Wulfram Gerstner,et al.  Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns , 1993, Biological Cybernetics.

[68]  E. Culurciello,et al.  A biomorphic digital image sensor , 2003, IEEE J. Solid State Circuits.

[69]  Giacomo Indiveri,et al.  A Model of Stimulus-Specific Adaptation in Neuromorphic Analog VLSI , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[70]  O. Richard,et al.  10×10nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation , 2011, 2011 International Electron Devices Meeting.

[71]  D. Natelson,et al.  Origin of hysteresis in resistive switching in magnetite is Joule heating , 2009, 0905.3510.

[72]  Luis A. Plana,et al.  SpiNNaker: Mapping neural networks onto a massively-parallel chip multiprocessor , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[73]  R. Engelbrecht,et al.  DIGEST of TECHNICAL PAPERS , 1959 .

[74]  Bernabé Linares-Barranco,et al.  A Five-Decade Dynamic-Range Ambient-Light-Independent Calibrated Signed-Spatial-Contrast AER Retina With 0.1-ms Latency and Optional Time-to-First-Spike Mode , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[75]  Bertram E. Shi,et al.  Neuromorphic implementation of orientation hypercolumns , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[76]  Wulfram Gerstner,et al.  Spike-timing dependent plasticity , 2010, Scholarpedia.

[77]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[78]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[79]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[80]  Jj Org Kramer Compact Integrated Motion Sensor with Three-pixel Interaction , 1996 .

[81]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[82]  Haim Sompolinsky,et al.  Learning Input Correlations through Nonlinear Temporally Asymmetric Hebbian Plasticity , 2003, The Journal of Neuroscience.

[83]  Bernabé Linares-Barranco,et al.  Multicasting Mesh AER: A Scalable Assembly Approach for Reconfigurable Neuromorphic Structured AER Systems. Application to ConvNets , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[84]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[85]  Ali Khiat,et al.  Concurrent resistive and capacitive switching of nanoscale TiO2 memristors , 2012 .

[86]  Wei Wu,et al.  A hybrid nanomemristor/transistor logic circuit capable of self-programming , 2009, Proceedings of the National Academy of Sciences.

[87]  Eugenio Culurciello,et al.  An Address-Event Fall Detector for Assisted Living Applications , 2008, IEEE Transactions on Biomedical Circuits and Systems.

[88]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[89]  Giacomo Indiveri,et al.  Frontiers in Neuromorphic Engineering , 2011, Front. Neurosci..

[90]  Kwabena Boahen,et al.  Optic nerve signals in a neuromorphic chip II: testing and results , 2004, IEEE Transactions on Biomedical Engineering.

[91]  Craig T. Jin,et al.  An Address-Event Vision Sensor for Multiple Transient Object Detection , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[92]  Massimo Barbaro,et al.  A 100/spl times/100 pixel silicon retina for gradient extraction with steering filter capabilities and temporal output coding , 2002 .

[93]  T. Serrano-Gotarredona,et al.  Exploiting memristance in adaptive asynchronous spiking neuromorphic nanotechnology systems , 2009, 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO).

[94]  R. Etienne-Cummings,et al.  Temporal change threshold detection imager , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[95]  Myoung-Jae Lee,et al.  Modeling for bipolar resistive memory switching in transition-metal oxides , 2010 .

[96]  Christofer Toumazou,et al.  Modelling of current percolation channels in emerging resistive switching elements , 2012, 1206.2746.

[97]  G. Laurent,et al.  Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts , 2007, Nature.

[98]  Yingxue Wang,et al.  Quantification of a Spike-Based Winner-Take-All VLSI Network , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[99]  Giacomo Indiveri,et al.  Analog VLSI architectures for motion processing: from fundamental limits to system applications , 1996, Proc. IEEE.

[100]  Wulfram Gerstner,et al.  A neuronal learning rule for sub-millisecond temporal coding , 1996, Nature.

[101]  D. Querlioz,et al.  Visual Pattern Extraction Using Energy-Efficient “2-PCM Synapse” Neuromorphic Architecture , 2012, IEEE Transactions on Electron Devices.