Optical fiber-based dispersion compensation using higher order modes near cutoff

Higher order spatial modes in optical fibers exhibit large, negative chromatic dispersion when operated near their cutoff wavelength. By using a spatial mode-converter to selectively excite a higher order mode in specially designed multimode fiber, this dispersion can be used to compensate the positive dispersion in conventional single-mode fiber spans. In this paper, issues related to compensating fiber and mode-converter design are explored. Experimental measurements in specially designed two-mode fibers operated in LP/sub 11/ mode show negative dispersion as large as -70 ps/nm/spl middot/km at 1555 nm. Pulse propagation and system experiments employing spatial mode-converters to excite LP/sub 11/ mode in a two-mode fiber demonstrate the feasibility of this technique for dispersion compensation in lightwave systems. >

[1]  D. M. Spirit,et al.  The Fabrication Of Low Loss High Na Silica Fibres For Raman Amplification , 1990, Other Conferences.

[2]  Kenneth O. Hill,et al.  Efficient, narrowband LP/sub 01/ implies/implied by LP/sub 02/ mode convertors fabricated in photosensitive fibre: spectral response , 1991 .

[3]  K. Kikushima Using equalizers to offset the deterioration in SCM video transmission due to fiber dispersion and EDFA gain tilt , 1992 .

[4]  T. Chikama,et al.  Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation , 1993, IEEE Photonics Technology Letters.

[5]  B. Y. Kim,et al.  Intermodal coupler using permanently photoinduced grating in two-mode optical fibre , 1989 .

[6]  Jay M. Wiesenfeld,et al.  Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber , 1992 .

[7]  A. J. Antos,et al.  All-Optical, Fiber-Based 1550 nm Dispersion Compensation in a 10 Gbit/s, 150 km Transmission Experiment over 1310 nm Optimized Fiber , 1992 .

[8]  C. Poole,et al.  Effect of refractive-index profiles on two-mode optical fiber dispersion compensators. , 1992, Optics letters.

[9]  J L Brooks,et al.  Two-mode fiber modal coupler. , 1984, Optics letters.

[10]  E. Snitzer,et al.  Observed Dielectric Waveguide Modes in the Visible Spectrum , 1961 .

[11]  E. Marcatili Bends in optical dielectric guides , 1969 .

[12]  J. L. Gimlett,et al.  Dispersion compensation in 1310 nm-optimised SMFs using optical equaliser fibre, EDFAs and 1310/1550 nm WDM , 1992 .

[13]  D. Gloge,et al.  Dispersion in weakly guiding fibers. , 1971, Applied optics.

[14]  C. D. Poole,et al.  Helical-grating two-mode fiber spatial-mode coupler , 1991 .

[15]  R. M. Derosier,et al.  10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion , 1993, IEEE Photonics Technology Letters.

[16]  S. Wang,et al.  Bend-induced loss for the higher-order spatial mode in a dual-mode fiber. , 1993, Optics letters.

[17]  B. Kim,et al.  Use of highly elliptical core fibers for two-mode fiber devices. , 1987, Optics letters.

[18]  H J Shaw,et al.  Fiber-optic modal coupler using periodic microbending. , 1986, Optics letters.

[19]  D. Gloge Weakly guiding fibers. , 1971, Applied optics.

[20]  J.M. Wiesenfeld,et al.  Elliptical-core dual-mode fiber dispersion compensator , 1993, IEEE Photonics Technology Letters.

[21]  J. Fleming,et al.  Material dispersion in lightguide glasses , 1978 .

[22]  W. Reed,et al.  Highly efficient single-mode fiber for broadband dispersion compensation , 1993 .

[23]  A.H. Gnauck,et al.  8-Gb/s-130 km transmission experiment using Er-doped fiber preamplifier and optical dispersion equalization , 1991, IEEE Photonics Technology Letters.

[24]  Herman M. Presby,et al.  Two-mode fibre spatial-mode converter using periodic core deformation , 1994 .

[25]  P. Kumar,et al.  Combating dispersion with parametric amplifiers , 1993, IEEE Photonics Technology Letters.

[26]  L. Cohen,et al.  Theoretical analysis of highly elliptical-core optical fibers with arbitrary refractive-index profiles. , 1992, Optics letters.

[27]  E. Marcatili,et al.  Improved coupled-mode equations for dielectric guides , 1986 .

[28]  Richard E. Wagner,et al.  Chromatic dispersion limitations in coherent lightwave transmission systems , 1988 .

[29]  Douglas Warren Hall,et al.  Dispersion-compensating fiber for upgrading existing 1310-nm-optimized systems to 1550-nm operation , 1993 .

[30]  G. E. Peterson,et al.  An exact numerical solution to maxwell's equations for lightguides , 1980, The Bell System Technical Journal.