Bio-inspired Model of Robot Adaptive Learning and Mapping

In this paper we present a model designed on the basis of the neurophysiology of the rat hippocampus to control the navigation of a real robot. The model allows the robot to learn reward locations dynamically moved in different environments, to build a topological map, and to return home autonomously. We describe robot experimentation results from our tests in a T-maze, an 8-arm radial maze and an extended maze

[1]  Henrik I. Christensen,et al.  Graphical SLAM - a self-correcting map , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[2]  Gordon Wyeth,et al.  Hippocampal models for simultaneous localisation and mapping on an autonomous robot , 2003 .

[3]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[4]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[5]  Ben J. A. Kröse,et al.  Hierarchical map building using visual landmarks and geometric constraints , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[7]  Favio R. Masson,et al.  Navigation and Mapping in Large Unstructured Environments , 2004, Int. J. Robotics Res..

[8]  P. Newman,et al.  SLAM in large-scale cyclic environments using the Atlas framework , 2003 .

[9]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[10]  Benjamin Kuipers,et al.  Local metrical and global topological maps in the hybrid spatial semantic hierarchy , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[11]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[12]  A.B. Ramirez,et al.  Return of the Rat: Biologically-Inspired Robotic Exploration and Navigation , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[13]  Michael Recce,et al.  A model of hippocampal function , 1994, Neural Networks.

[14]  Wolfram Burgard,et al.  Map building with mobile robots in dynamic environments , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[15]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[16]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[17]  Gordon Wyeth,et al.  RatSLAM: a hippocampal model for simultaneous localization and mapping , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[18]  D S Touretzky,et al.  Theory of rodent navigation based on interacting representations of space , 1996, Hippocampus.

[19]  Michael A. Arbib,et al.  Affordances. Motivations, and the World Graph Theory , 1998, Adapt. Behav..

[20]  Jean-Arcady Meyer,et al.  Animat navigation using a cognitive graph , 1998, Biological Cybernetics.

[21]  Michael Bosse,et al.  Simultaneous Localization and Map Building in Large-Scale Cyclic Environments Using the Atlas Framework , 2004, Int. J. Robotics Res..

[22]  A. Barto,et al.  Adaptive Critics and the Basal Ganglia , 1994 .

[23]  Michael A. Arbib,et al.  The Neural Simulation Language: A System for Brain Modeling , 2002 .

[24]  Vasant Honavar,et al.  A Computational Model of Rodent Spatial Learning and Some Behavioral Experiments , 1998 .

[25]  Philippe Gaussier,et al.  From view cells and place cells to cognitive map learning: processing stages of the hippocampal system , 2002, Biological Cybernetics.