An updated model for millimeter wave propagation in moist air

A practical atmospheric Millimeter-Wave Propagation Model (MPM) is formulated that predicts attenuation. delay, and noise properties of moist air for frequencies up to 1000 GHz. Input variables are height distributions (0-30 km) of pressure, temperature, humidity, and suspended droplet concentration along an anticipated radio path. Spectroscopic data consist of more than 450 parameters describing local O2 and H2O absorption lines complemented by continuum spectra for dry air, water vapor, and hydrosols. For a model (MPM*) limited to frequencies below 300 GHz, the number of spectroscopic parameters can be reduced to less than 200. Recent laboratory measurements by us at 138 GHz of absolute attenuation rates for simulated air with water vapor pressures up to saturation allow the formulation of an improved, though empirical water vapor continuum. Model predictions are compared with selected (2.5-430 GHz) data from both laboratory and field experiments. In general, good agreement is obtained.

[1]  G. E. Becker,et al.  Water Vapor Absorption of Electromagnetic Radiation in the Centimeter Wave-Length Range , 1946 .

[2]  D. Hogg,et al.  Emission measurements of 31.6 GHz absorption by atmospheric water vapor , 1983 .

[3]  V. Y. Ryadov,et al.  On the anomalies in submillimeter absorption spectrum of atmospheric water vapor , 1984 .

[4]  A Goldman,et al.  AFGL atmospheric absorption line parameters compilation: 1982 edition. , 1981, Applied optics.

[5]  H. Pickett,et al.  PRESSURE BROADENING MEASUREMENTS OF THE 118.750 GHz OXYGEN TRANSITION , 1977 .

[6]  Earl W. Smith Absorption and dispersion in the O2 microwave spectrum at atmospheric pressures , 1981 .

[7]  P. Rosenkranz,et al.  Monthly distributions of precipitable water from the NIMBUS 7 SMMR data , 1984 .

[8]  M. Mizushima,et al.  Microwave Resonance Lines of 16 O 2 in Its Electronic Ground State (X 3 Σ g , 1982 .

[9]  Frank C. De Lucia,et al.  The pure rotational spectrum of water vapor—A millimeter, submillimeter, and far infrared analysis , 1983 .

[10]  T. Wilheit,et al.  Remote sensing of atmospheric water vapor, liquid water, and wind speed at the ocean surface by passive microwave techniques from the Nimbus 5 satellite , 1979 .

[11]  J. T. Godfrey,et al.  Pressure Broadening of theO2Microwave Spectrum , 1972 .

[12]  H. J. Liebe An atmospheric millimeter wave propagation model , 1983 .

[13]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[14]  K. Stankevich Absorption of submillimeter-range radio waves in a dry atmosphere , 1974 .

[15]  W. Smith,et al.  Temperature dependent collision-induced absorption in nitrogen , 1984 .

[16]  S. Clough,et al.  The Line Shape for Collisionally Broadened Molecular Transitions: A Quantum Theory Satisfying the Fluctuation Dissipation Theorem. , 1982 .

[17]  Earl W. Smith,et al.  Pressure broadening of the O2 microwave spectrum , 1979 .

[18]  Laurence S. Rothman,et al.  Atmospheric Spectral Transmittance And Radiance: FASCOD1 B , 1981, Other Conferences.

[19]  Gert Brussaard,et al.  Characterisation of the 50-70 GHz band for space communications , 1983 .

[20]  A. F. Krupnov,et al.  Study of microwave pressure lineshifts: Dynamic and isotopic dependences , 1983 .

[21]  Sidney Perkowitz,et al.  Far infrared optical constants of liquid water measured with an optically pumped laser , 1979 .

[22]  L. Blake Ray Height Computation for a Continuous Nonlinear Atmospheric Refractive-Index Profile , 1968 .

[23]  Gottfried Hänel,et al.  The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air , 1976 .

[24]  R. S. Lawrence,et al.  Theoretical and calculational aspects of the radio refractive index of water vapor , 1982 .

[25]  R. McMillan,et al.  Atmospheric effects on near-millimeter-wave propagation , 1985, Proceedings of the IEEE.

[26]  G. Boudouris,et al.  On the index of refraction of air, the absorption and dispersion of centimeterwaves by gases , 1963 .

[27]  T. Manabe,et al.  Measurments of attenuation and refractive dispersion due to atmospheric water vapor at 80 and 240 GHz , 1985 .

[28]  P. Rosenkranz Comment on ‘‘Absorption and dispersion in the O2 microwave spectrum at atmospheric pressures’’ , 1982 .

[29]  H. Liebe,et al.  Atmospheric EHF window transparencies near 35, 90, 140 and 220 GHz , 1983 .

[30]  J. Chamberlain On the calculation of integrated absorption strengths from refraction data , 1967 .

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  R. Crane,et al.  Fundamental limitations caused by RF propagation , 1981, Proceedings of the IEEE.

[33]  P. Rosenkranz Shape of the 5 mm oxygen band in the atmosphere , 1975 .

[34]  Ernest K. Smith Centimeter and millimeter wave attenuation and brightness temperature due to atmospheric oxygen and water vapor , 1982 .

[35]  K. Allen Estimates of Millimeter Wave Attenuation for 18 United States Cities , 1983 .

[36]  Frank C. De Lucia,et al.  Submillimeter spectroscopy of the major isotopes of water , 1984 .

[37]  P. Richardson,et al.  Sky brightness temperature measurements at 135 GHz and 215 GHz , 1984 .

[38]  Vincent J. Falcone,et al.  Atmospheric Attenuation In The 30 To 300 GHz Region Using RADTRAN And MWTRAN , 1982, Other Conferences.

[39]  J. W. Waters,et al.  2.3. Absorption and Emission by Atmospheric Gases , 1976 .

[40]  R H Espeland,et al.  Millimeter-Wave Propagation in Moist Air: Model versus Path Data, , 1985 .

[41]  H. Liebe,et al.  Atmospheric oxygen microwave spectrum--Experiment versus theory , 1977 .

[42]  Pressure broadening of oxygen and its implications for cosmic background measurements , 1981 .

[43]  F. X. Kneizys,et al.  Air Mass Computer Program for Atmospheric Transmittance/Radiance Calculation: FSCATM , 1983 .

[44]  U. Mingelgrin The microwave dispersion spectrum of O2 , 1974 .

[45]  Michael E. Thomas,et al.  The N2-broadened water vapor absorption line shape and infrared continuum absorption—II. Implementation of the line shape☆ , 1982 .

[46]  Hans J. Liebe,et al.  The atmospheric water vapor continuum below 300 GHz , 1983, 1983 Eighth International Conference on Infrared and Millimeter Waves.

[47]  K. Lam Application of pressure broadening theory to the calculation of atmospheric oxygen and water vapor microwave absorption , 1977 .

[48]  Herbert M. Pickett,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985 .

[49]  Hans J. Liebe,et al.  Accurate Foreign‐Gas‐Broadening Parameters of the 22‐GHz H2O Line from Refraction Spectroscopy , 1969 .

[50]  Hans J. Liebe,et al.  Modeling attenuation and phase of radio waves in air at frequencies below 1000 GHz , 1981 .

[51]  D. E. Burch,et al.  Continuum Absorption by H2O. , 1982 .