Efficiently Deciding μ-Calculus with Converse over Finite Trees

We present a sound and complete satisfiability-testing algorithm and its effective implementation for an alternation-free modal μ-calculus with converse, where formulas are cycle-free and are interpreted over finite ordered trees. The time complexity of the satisfiability-testing algorithm is 2O(n) in terms of formula size n. The algorithm is implemented using symbolic techniques (BDD). We present crucial implementation techniques and heuristics that we used to make the algorithm as fast as possible in practice. Our implementation is available online and can be used to solve logical formulas of significant size and practical value. We illustrate this in the setting of XML trees.

[1]  Everardo Bárcenas,et al.  Query Reasoning on Trees with Types, Interleaving, and Counting , 2011, IJCAI.

[2]  Diego Calvanese,et al.  Node Selection Query Languages for Trees , 2010, AAAI.

[3]  Diego Calvanese,et al.  An Automata-Theoretic Approach to Regular XPath , 2009, DBPL.

[4]  Benjamin C. Pierce,et al.  Regular expression types for XML , 2000, TOPL.

[5]  Stephan Merz,et al.  Model Checking , 2000 .

[6]  Martin Lange Weak Automata for the Linear Time µ-Calculus , 2005, VMCAI.

[7]  Tim Furche,et al.  XPath: Looking Forward , 2002, EDBT Workshops.

[8]  Pierre Genevès,et al.  Efficient static analysis of XML paths and types , 2007, PLDI '07.

[9]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[10]  M. de Rijke,et al.  PDL for ordered trees , 2005, J. Appl. Non Class. Logics.

[11]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic , 2008, 25 Years of Model Checking.

[12]  Thomas Wilke,et al.  Automata logics, and infinite games: a guide to current research , 2002 .

[13]  Thomas Wilke,et al.  Automata Logics, and Infinite Games , 2002, Lecture Notes in Computer Science.

[14]  Dexter Kozen,et al.  Kleene algebra with tests , 1997, TOPL.

[15]  Steven J. DeRose,et al.  XML Path Language (XPath) Version 1.0 , 1999 .

[16]  Dan Suciu,et al.  Containment and equivalence for a fragment of XPath , 2004, JACM.

[17]  Masami Hagiya,et al.  A Decision Procedure for the Alternation-Free Two-Way Modal µ-Calculus , 2005, TABLEAUX.

[18]  Pierre Genevès,et al.  A system for the static analysis of XPath , 2006, TOIS.

[19]  Giuseppe Castagna,et al.  CDuce: an XML-centric general-purpose language , 2003, ACM SIGPLAN Notices.

[20]  Robert K. Brayton,et al.  Early quantification and partitioned transition relations , 1996, Proceedings International Conference on Computer Design. VLSI in Computers and Processors.

[21]  M. Lange,et al.  The PGSolver Collection of Parity Game Solvers Version 3 , 2010 .

[22]  Moshe Y. Vardi Reasoning about The Past with Two-Way Automata , 1998, ICALP.

[23]  Viktor Kuncak,et al.  Full functional verification of linked data structures , 2008, PLDI '08.

[24]  S. Safra,et al.  On the complexity of omega -automata , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[25]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[26]  Cristina Sirangelo,et al.  Reasoning about XML with Temporal Logics and Automata , 2008, LPAR.

[27]  Ulrike Sattler,et al.  BDD-based decision procedures for the modal logic K ★ , 2006, J. Appl. Non Class. Logics.

[28]  Everardo Bárcenas,et al.  On the analysis of queries with counting constraints , 2009, DocEng '09.

[29]  Scott Boag,et al.  XQuery 1.0 : An XML Query Language , 2007 .

[30]  Radu Mateescu,et al.  Local Model-Checking of Modal Mu-Calculus on Acyclic Labeled Transition Systems , 2002, TACAS.

[31]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[32]  Diego Calvanese,et al.  Regular XPath: Constraints, Query Containment and View-Based Answering for XML Documents , 2008 .

[33]  Orna Kupferman,et al.  The Weakness of Self-Complementation , 1999, STACS.

[34]  Gérard P. Huet,et al.  The Zipper , 1997, Journal of Functional Programming.

[35]  Masami Hagiya,et al.  A decision procedure for alternation-free modal µ-calculi , 2008, Advances in Modal Logic.

[36]  Oliver Friedmann,et al.  A Solver for Modal Fixpoint Logics , 2010, Electron. Notes Theor. Comput. Sci..

[37]  Vaughan R. Pratt,et al.  A decidable mu-calculus: Preliminary report , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[38]  Murali Mani,et al.  Taxonomy of XML schema languages using formal language theory , 2005, TOIT.