Low-Cost Packaging of 300 GHz Integrated Circuits With an On-Chip Patch Antenna

Placing a 300 GHz on-chip patch antenna in a low-cost quad-flat no-lead (QFN) package using materials based on silica microparticles dispersed in an epoxy matrix can improve the antenna performance. Full-wave simulations of a rectangular patch antenna, compliant with the metal stack and design rules of a 65 nm complementary metal–oxide–semiconductor (CMOS) process, show 13% radiation efficiency, 1 dB peak antenna gain, and 7 GHz –10 dB |S11| bandwidth increases when the thickness of packaging material over the antenna is ∼λ/3. When placed in a QFN package, 276 GHz CMOS signal generators with the same on-chip antenna show the effective isotropic radiated power ∼6 dB higher than that of unpackaged. This improvement is partly attributed to the antenna performance enhancement and demonstrates that it is possible to package 300 GHz integrated circuits with an on-chip patch antenna using a low-cost technique.

[1]  Ruonan Han,et al.  Paths to terahertz CMOS integrated circuits , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[2]  Wooyeol Choi,et al.  410-GHz CMOS imager using a 4th sub-harmonic mixer with effective NEP of 0.3 fW/Hz0.5 at 1-kHz noise bandwidth , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).

[3]  O. Lafond,et al.  High-Efficient and High-Gain Superstrate Antenna for 60-GHz Indoor Communication , 2009, IEEE Antennas and Wireless Propagation Letters.

[4]  Nicolaos G. Alexopoulos,et al.  Fundamental superstrate (cover) effects on printed circuit antennas , 1984 .

[5]  Ehsan Afshari,et al.  Active Terahertz Imaging Using Schottky Diodes in CMOS: Array and 860-GHz Pixel , 2013, IEEE Journal of Solid-State Circuits.

[6]  Gabriel M. Rebeiz,et al.  A 0.32 THz SiGe 4x4 Imaging Array Using High-Efficiency On-Chip Antennas , 2013, IEEE Journal of Solid-State Circuits.

[7]  N. Sharma,et al.  200–280GHz CMOS RF front-end of transmitter for rotational spectroscopy , 2016, 2016 IEEE Symposium on VLSI Technology.

[8]  Ho-Jin Song,et al.  Packages for Terahertz Electronics , 2017, Proceedings of the IEEE.

[9]  Duixian Liu,et al.  A superstrate patch antenna for 60-GHz applications , 2009, 2009 3rd European Conference on Antennas and Propagation.

[10]  Ehsan Afshari,et al.  280GHz and 860GHz image sensors using Schottky-barrier diodes in 0.13μm digital CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[11]  Chih-Ming Hung,et al.  A 410GHz CMOS Push-Push Oscillator with an On-Chip Patch Antenna , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[12]  N. Alexopoulos,et al.  Gain enhancement methods for printed circuit antennas through multiple superstrates , 1987 .

[13]  K.K. O,et al.  450 × 580 µm 2 Pixel incorporating TX and coherent RX in CMOS for mm‐wave active imaging using a single reflector , 2018, Electronics Letters.

[14]  Andrew J. Gallant,et al.  Free-Space Permittivity Measurement at Terahertz Frequencies With a Vector Network Analyzer , 2016, IEEE Transactions on Terahertz Science and Technology.

[15]  Yan Zhao,et al.  A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[16]  Ulf Johannsen,et al.  On-Chip Antenna Integration for Millimeter-Wave Single-Chip FMCW Radar, Providing High Efficiency and Isolation , 2016, IEEE Transactions on Antennas and Propagation.