Ethanolic extract of the fungus Trichoderma stromaticum decreases inflammation and ameliorates experimental cerebral malaria in C57BL/6 mice

[1]  B. Gamain,et al.  Structure-Guided Identification of a Family of Dual Receptor-Binding PfEMP1 that Is Associated with Cerebral Malaria , 2017, Cell host & microbe.

[2]  A. Craig,et al.  A quantitative brain map of experimental cerebral malaria pathology , 2017, PLoS pathogens.

[3]  C. Janse,et al.  CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature , 2016, PLoS pathogens.

[4]  L. Rénia,et al.  Tissue-Resident CD169(+) Macrophages Form a Crucial Front Line against Plasmodium Infection. , 2016, Cell reports.

[5]  N. Caroff,et al.  Identification and Biological Activities of Long‐Chain Peptaibols Produced by a Marine‐Derived Strain of Trichoderma longibrachiatum , 2016, Chemistry & biodiversity.

[6]  P. E. Van den Steen,et al.  The immunological balance between host and parasite in malaria. , 2016, FEMS microbiology reviews.

[7]  Ana Rodriguez,et al.  Perivascular Arrest of CD8+ T Cells Is a Signature of Experimental Cerebral Malaria , 2015, PLoS pathogens.

[8]  M. Teixeira,et al.  Effect of mushroom Agaricus blazei on immune response and development of experimental cerebral malaria , 2015, Malaria Journal.

[9]  A. Shevchenko,et al.  Host Cell Phosphatidylcholine Is a Key Mediator of Malaria Parasite Survival during Liver Stage Infection , 2014, Cell host & microbe.

[10]  T. Roskams,et al.  Hemozoin Induces Hepatic Inflammation in Mice and Is Differentially Associated with Liver Pathology Depending on the Plasmodium Strain , 2014, PloS one.

[11]  H. Ball,et al.  Cerebral malaria: gamma-interferon redux , 2014, Front. Cell. Infect. Microbiol..

[12]  E. Caldini,et al.  Ultrastructure of the lung in a murine model of malaria-associated acute lung injury/acute respiratory distress syndrome , 2014, Malaria Journal.

[13]  Carmenza Spadafora,et al.  Malarial hemozoin: from target to tool. , 2014, Biochimica et biophysica acta.

[14]  N. Khim,et al.  Artemisinin resistance in Plasmodium falciparum. , 2014, The Lancet. Infectious diseases.

[15]  U. Kück,et al.  Putting Fungi to Work: Harvesting a Cornucopia of Drugs, Toxins, and Antibiotics , 2014, PLoS pathogens.

[16]  Douglas R. Call,et al.  Transcriptome analysis of Vibrio parahaemolyticus in type III secretion system 1 inducing conditions , 2014, Front. Cell. Infect. Microbiol..

[17]  B. J. Visser,et al.  Serum lipids and lipoproteins in malaria - a systematic review and meta-analysis , 2013, Malaria Journal.

[18]  P. Coley,et al.  Bioactivity of Fungal Endophytes as a Function of Endophyte Taxonomy and the Taxonomy and Distribution of Their Host Plants , 2013, PloS one.

[19]  M. Frédérich,et al.  In vivo antimalarial activity of Keetia leucantha twigs extracts and in vitro antiplasmodial effect of their constituents. , 2013, Journal of ethnopharmacology.

[20]  E. Vanstreels,et al.  Hemozoin induces lung inflammation and correlates with malaria-associated acute respiratory distress syndrome. , 2013, American journal of respiratory cell and molecular biology.

[21]  J. Perin,et al.  Reduced Susceptibility of Plasmodium falciparum to Artesunate in Southern Myanmar , 2013, PloS one.

[22]  H. M. Sonawat,et al.  Metabolic fingerprints of serum, brain, and liver are distinct for mice with cerebral and noncerebral malaria: a ¹H NMR spectroscopy-based metabonomic study. , 2012, Journal of proteome research.

[23]  L. J. Babatola,et al.  Modulation of Lipoprotein Cholesterol Levels in Plasmodium berghei Malarial Infection by Crude Aqueous Extract of Ganoderma lucidum , 2012, Cholesterol.

[24]  M. Mota,et al.  In Vivo Hemozoin Kinetics after Clearance of Plasmodium berghei Infection in Mice , 2012, Malaria research and treatment.

[25]  K. Hahm,et al.  Antimicrobial lipopeptaibol trichogin GA IV: role of the three Aib residues on conformation and bioactivity , 2012, Amino Acids.

[26]  K. Hahm,et al.  Antimicrobial lipopeptaibol trichogin GA IV: role of the three Aib residues on conformation and bioactivity , 2012, Amino Acids.

[27]  I. Grigoriev,et al.  Trichoderma: the genomics of opportunistic success , 2011, Nature Reviews Microbiology.

[28]  Arne Klungland,et al.  Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood–brain water uptake and confers barrier function on perivascular astrocyte endfeet , 2011, Proceedings of the National Academy of Sciences.

[29]  N. M. Silva,et al.  The Biocontrol Fungus Trichoderma stromaticum Downregulates Respiratory Burst and Nitric Oxide in Phagocytes and IFN-Gamma and IL-10 , 2011, Journal of toxicology and environmental health. Part A.

[30]  I. Coppens,et al.  Plasmodium salvages cholesterol internalized by LDL and synthesized de novo in the liver , 2011, Cellular microbiology.

[31]  B. Grimberg Methodology and application of flow cytometry for investigation of human malaria parasites. , 2011, Journal of immunological methods.

[32]  D. Taramelli,et al.  The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria , 2011, Malaria Journal.

[33]  F. Amante,et al.  High Parasite Burdens Cause Liver Damage in Mice following Plasmodium berghei ANKA Infection Independently of CD8+ T Cell-Mediated Immune Pathology , 2011, Infection and Immunity.

[34]  John H. Zhang,et al.  Comparison Evans Blue injection routes: Intravenous versus intraperitoneal, for measurement of blood–brain barrier in a mice hemorrhage model , 2011, Journal of Neuroscience Methods.

[35]  K. Haldar,et al.  A Rapid Murine Coma and Behavior Scale for Quantitative Assessment of Murine Cerebral Malaria , 2010, PloS one.

[36]  E. Riley,et al.  Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease , 2009, Parasitology.

[37]  K. Silamut,et al.  Artemisinin resistance in Plasmodium falciparum malaria. , 2009, The New England journal of medicine.

[38]  L. Rénia,et al.  Control of pathogenic CD8+ T cell migration to the brain by IFN‐γ during experimental cerebral malaria , 2008, Parasite immunology.

[39]  Zhiqing Chen,et al.  Possible involvement of long chain fatty acids in the spores of Ganoderma lucidum (Reishi Houshi) to its anti-tumor activity. , 2008, Biological & pharmaceutical bulletin.

[40]  W. Kim,et al.  Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease , 2008, Hepatology.

[41]  H. Brückner,et al.  Peptaibiomics: Screening for Polypeptide Antibiotics (Peptaibiotics) from Plant‐Protective Trichoderma Species , 2006, Chemistry & biodiversity.

[42]  G. Turner,et al.  Human cerebral malaria and the blood-brain barrier. , 2006, International journal for parasitology.

[43]  D. Ferguson,et al.  A quantitative ultrastructural study of the liver and the spleen in fatal falciparum malaria. , 2005, The Southeast Asian journal of tropical medicine and public health.

[44]  Shailesh Singh,et al.  The cerebral-malaria-associated expression of RANTES, CCR3 and CCR5 in post-mortem tissue samples , 2004, Annals of tropical medicine and parasitology.

[45]  N. Hunt,et al.  Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. , 2003, Trends in immunology.

[46]  L. Rénia,et al.  CCR5 deficiency decreases susceptibility to experimental cerebral malaria. , 2003, Blood.

[47]  D. Granger,et al.  Regulation of Endothelial Cell Adhesion Molecule Expression in an Experimental Model of Cerebral Malaria , 2002, Microcirculation.

[48]  P. Kaye,et al.  Locally Up-regulated Lymphotoxin α, Not Systemic Tumor Necrosis Factor α, Is the Principle Mediator of Murine Cerebral Malaria , 2002, The Journal of experimental medicine.

[49]  L. Sanni The role of cerebral oedema in the pathogenesis of cerebral malaria , 2001, Redox report : communications in free radical research.

[50]  N. Rayment,et al.  Immunopathology of Cerebral Malaria: Morphological Evidence of Parasite Sequestration in Murine Brain Microvasculature , 2000, Infection and Immunity.

[51]  R. Lumsden,et al.  Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen , 2000 .

[52]  L. Rénia,et al.  Involvement of IFN‐γ receptor‐mediated signaling in pathology and anti‐malarial immunity induced by Plasmodium berghei infection , 2000 .

[53]  F. Kirkham,et al.  Intracranial hypertension in Africans with cerebral malaria , 1997, Archives of disease in childhood.

[54]  David D. Manning,et al.  Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. , 1996, Journal of immunology.

[55]  I. Stamenkovic,et al.  Late administration of monoclonal antibody to leukocyte function‐antigen 1 abrogates incipient murine cerebral malaria , 1991, European journal of immunology.

[56]  P. Vassalli,et al.  Monoclonal antibody against interferon gamma can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Levy,et al.  Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. , 1972, Clinical chemistry.

[58]  A. H. Cook,et al.  Production of antibiotics by fungi. , 1945, British journal of experimental pathology.

[59]  L. Pötter,et al.  Trichoderma virens as a biocontrol of Toxocara canis: In vivo evaluation. , 2017, Revista iberoamericana de micologia.

[60]  S. Srichairatanakool,et al.  MODULATION OF TOTAL CHOLESTEROL AND TRIGLYCERIDE IN PLASMODIUM BERGHEI INFECTED MICE BY AQUEOUS CRUDE EXTRACT OF ANDROGRAPHIS PANICULATA , 2015 .

[61]  M. Călin,et al.  Effect of Volatile and Non-Volatile Metabolites from Trichoderma spp. against Important Phytopathogens , 2014 .

[62]  Amit Sharma,et al.  A study of correlation between iron deficiency anaemia and serum lipid profile in Indian adults in BRIMS, Bidar , 2014 .

[63]  H. Ball,et al.  Interferon-gamma synergises with tumour necrosis factor and lymphotoxin-alpha to enhance the mRNA and protein expression of adhesion molecules in mouse brain endothelial cells. , 2007, Cytokine.

[64]  M. Muniz-Junqueira Immunomodulatory therapy associated to anti-parasite drugs as a way to prevent severe forms of malaria. , 2007, Current clinical pharmacology.

[65]  L. Loguercio,et al.  Trichoderma stromaticum for management of witches' broom of cacao in Brazil. , 2007 .

[66]  H. Ball,et al.  Interferon-γ synergises with tumour necrosis factor and lymphotoxin-α to enhance the mRNA and protein expression of adhesion molecules in mouse brain endothelial cells , 2007 .

[67]  P. Kremsner,et al.  Uncomplicated malaria. , 2005, Current topics in microbiology and immunology.

[68]  B. Ryffel,et al.  Resistance to cerebral malaria in tumor necrosis factor-alpha/beta-deficient mice is associated with a reduction of intercellular adhesion molecule-1 up-regulation and T helper type 1 response. , 1997, The American journal of pathology.

[69]  B. Ryffel,et al.  Interferon-gamma is essential for the development of cerebral malaria. , 1997, European journal of immunology.

[70]  C. Bastos Mycoparasitic nature of the antagonism between Trichoderma viride and Crinipellis perniciosa , 1996 .

[71]  P. Franzone,et al.  An in vivo evaluation , 1989 .