Deposition and characterisation of vanadium oxide thin films: Linking single crystal and supported catalyst

Abstract Thin films can make a useful link between single crystal and supported vanadium oxide. The deposition of vanadium oxide thin films with physical vapour deposition techniques ensures clean and highly controllable synthesis. The resulting material is easily accessed with surface sensitive techniques. On flat TiO2 anatase substrates, XPS–XPD and UPS indicated that the vanadia deposition was epitaxial, and fully oxidised if performed in situ. A step closer to typical industrial catalysts was achieved by sputter deposition onto sub-millimetre inert particles. In addition to surface characterisation, these model particle catalysts allow use in reactors for catalytic testing under relevant process conditions. On both silica and titania supports, sputter deposited vanadia of varying thickness proved to be equally well dispersed. Oxidative dehydrogenation (ODH) activity was higher over vanadia/titania (anatase) than over vanadia/silica, demonstrating the synergetic interaction between anatase and vanadia. Highest activity in alkane ODH was observed for vanadia a few monolayers thick, supported on titania-coated particles.

[1]  H. Poelman,et al.  V2O5 thin films deposited by means of d.c. magnetron sputtering from ceramic V2O3 targets , 2002 .

[2]  E. Gaigneaux,et al.  New supported vanadia catalysts for oxidation reactions prepared by sputter deposition , 2007 .

[3]  H. Poelman,et al.  Observation of the V2O5(001) surface using ambient atomic force microscopy , 1997 .

[4]  H. Poelman,et al.  The V2O5/TiO2 (anatase) model catalyst structure: XPD study and single scattering cluster simulations , 2000 .

[5]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[6]  B. Sels,et al.  Magnetron sputter deposition for catalyst synthesis , 2007 .

[7]  E. Altman,et al.  Growth and structure of vanadium oxide on anatase (101) terraces , 2006 .

[8]  R. Zimmermann,et al.  Strong hybridization in vanadium oxides: evidence from photoemission and absorption spectroscopy , 1998 .

[9]  G. Silversmit,et al.  A fully oxidized V2O5/TiO2(001)-anatase system studied with in situ synchrotron photoelectron spectroscopy , 2005 .

[10]  B. Weckhuysen,et al.  Structure and reactivity of surface vanadium oxide species on oxide supports , 1997 .

[11]  J. Haemers Purification and Single Crystal Growth of V2O5 , 2010 .

[12]  Charles S. Fadley,et al.  Angle-resolved x-ray photoelectron spectroscopy , 1984 .

[13]  O. R. Nascimento,et al.  Magnetic resonance study of a vanadium pentoxide gel , 2008 .

[14]  S. Berg,et al.  Fundamental understanding and modeling of reactive sputtering processes , 2005 .

[15]  G. Silversmit,et al.  An X-ray photoelectron diffraction study of a TiO2(001) anatase single crystal mineral , 2001 .

[16]  C. Minot,et al.  A periodic model for the V2O5–TiO2 (anatase) catalyst. Stability of dimeric species , 2003 .

[17]  H. Freund,et al.  Adsorption of molecular and atomic hydrogen on vacuum-cleaved V2O5(001) , 2002 .

[18]  F. Lévy,et al.  Growth and Raman spectroscopic characterization of TiO2 anatase single crystals , 1993 .

[19]  H. Poelman,et al.  The V2O5 Surface Phonon Spectrum. , 1992 .

[20]  O. Matsumoto,et al.  Properties of V2O5 thin films deposited by means of plasma MOCVD , 2001 .

[21]  Dirk Poelman,et al.  DC magnetron sputter deposited vanadia catalysts for oxidation processes , 2007 .

[22]  C. Julien,et al.  On the growth mechanism of pulsed-laser deposited vanadium oxide thin films , 2004 .

[23]  G. Rohrer,et al.  The observation of oxygen disorder on the V2O5(001) surface using scanning tunneling microscopy , 1995 .

[24]  Victor E. Henrich,et al.  Growth and surface structure of vanadium oxide on anatase (0 0 1) , 2004 .

[25]  G. Bond,et al.  Chapter 1 Origins and objectives , 1994 .

[26]  W. H. Barnes,et al.  The crystal structure of vanadium pentoxide , 1961 .

[27]  Alexis T. Bell,et al.  Structure and Properties of Vanadium Oxide-Zirconia Catalysts for Propane Oxidative Dehydrogenation , 1998 .

[28]  G. Centi Nature of active layer in vanadium oxide supported on titanium oxide and control of its reactivity in the selective oxidation and ammoxidation of alkylaromatics , 1996 .

[29]  G. Silversmit,et al.  A comparative XPS and UPS study of VOx layers on mineral TiO2(001)‐anatase supports , 2006 .

[30]  Bert M. Weckhuysen,et al.  Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis , 2003 .

[31]  G. Silversmit,et al.  An XPS study on the surface reduction of V2O5(001) induced by Ar+ ion bombardment , 2006 .

[32]  D. Lincot,et al.  Electrical properties of V2O5 thin films obtained by atomic layer deposition (ALD) , 2004 .

[33]  N. Ichikawa,et al.  Epitaxial growth of anatase TiO2 thin films on LaAlO3(100) prepared using pulsed laser deposition , 2006 .

[34]  Guy Marin,et al.  Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+) , 2004 .

[35]  D. Mangalaraj,et al.  Structural properties of V 2O 5 thin films prepared by vacuum evaporation , 2003 .

[36]  T. Blasco,et al.  Oxidative dyhydrogenation of short chain alkanes on supported vanadium oxide catalysts , 1997 .

[37]  L. Fiermans,et al.  Particular LEED features on the V2O5 (010) surface and their relation to the leed beam induced transition V2O5→V12O26 , 1969 .