A Content-Oriented Architecture for Publish/Subscribe Systems

With the user behavior of Internet shifting towards data dissemination and retrieval, Information Centric Networking (ICN) is proposed to suit these demands. ICN treats content as the first-class entity, with nodes exchanging information based on the names of the content instead of the IP addresses of the end points requesting or providing the content. This shift from a “location-based” network to a “content-centric” network allows more efficient data dissemination, especially when the content may be available at multiple points, or the provider or consumer is mobile. Publish/Subscribe (pub/sub) is another important content-centric communication model where publishers and subscribers only focus on the data rather than the location of each other. However, most of the ICN proposals do not have direct support for pub/sub. This inevitably results in pub/sub being implemented via polling which leads to higher network load, higher publisher load and longer latency. This dissertation tackles the shortcomings of existing solutions and provides a full-fledge solution for efficient pub/sub communication in ICN. By enhancing Named Data Networking (NDN) in the network layer, Content Oriented Network for Publish/Subscribe Systems (COPSS) is able to support best-effort push-based multicast that is required by pub/sub. A transport-layer protocol (Control Protocol for Scalable and Adaptive Information Dissemination (SAID)) is proposed to satisfy the need for reliability and congestion control during pub/sub. The protocol attempts to solve a long-standing issue of multicast congestion control by separating congestion control from reliability. In the application layer, an object resolution system (Object Resolution Framework in Information-Centric Environment (ORICE)) similar to a search engine is proposed to help users get identities of the data that they might need. The efficiency of the architecture is evaluated via applications that emulate Twitter, gaming, VoD and file transfer. Results show that the architecture can outperform existing pullbased ICN solutions in terms of response latency, network load and publisher load. Additionally, this dissertation extends the concept of content-concentricity to a common and important network management issue – service chaining. The design proves that this concept can be incorporated into many network designs and has the potential to make these systems more efficient and dynamic.

[1]  Ratul Mahajan,et al.  Inferring link weights using end-to-end measurements , 2002, IMW '02.

[2]  John Moy,et al.  OSPF Version 2 , 1998, RFC.

[3]  Andrew Adams,et al.  Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised) , 2005, RFC.

[4]  Ross W. Callon,et al.  Use of OSI IS-IS for routing in TCP/IP and dual environments , 1990, RFC.

[5]  Hao Wu,et al.  Wire Speed Name Lookup: A GPU-based Approach , 2013, NSDI.

[6]  Michael Walfish,et al.  Untangling the Web from DNS , 2004, NSDI.

[7]  Alexander L. Wolf,et al.  A routing scheme for content-based networking , 2004, IEEE INFOCOM 2004.

[8]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[9]  V. Jacobson,et al.  Congestion avoidance and control , 1988, CCRV.

[10]  Mark Handley,et al.  NACK-Oriented Reliable Multicast (NORM) Transport Protocol , 2009, RFC.

[11]  K. K. Ramakrishnan,et al.  Understanding the super-sized traffic of the super bowl , 2013, Internet Measurement Conference.

[12]  Steven McCanne,et al.  RMX: reliable multicast for heterogeneous networks , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[13]  Stephen E. Deering,et al.  Host extensions for IP multicasting , 1986, RFC.

[14]  Xintong Wang,et al.  Vivaldi : A Decentralized Network Coordinate System , 2016 .

[15]  J. Noel Chiappa,et al.  The Nimrod Routing Architecture , 1996, RFC.

[16]  Gaogang Xie,et al.  CodingCache: multipath-aware CCN cache with network coding , 2013, ICN '13.

[17]  Mark Handley,et al.  Is it still possible to extend TCP? , 2011, IMC '11.

[18]  Bruce M. Maggs,et al.  Less pain, most of the gain: incrementally deployable ICN , 2013, SIGCOMM.

[19]  Syed Obaid Amin,et al.  NLSR: named-data link state routing protocol , 2013, ICN '13.

[20]  QUTdN QeO,et al.  Random early detection gateways for congestion avoidance , 1993, TNET.

[21]  Yusuke Okazaki,et al.  Network Functions Virtualisation ― Toward a Robust and Elastic Network ― , 2016 .

[22]  Klara Nahrstedt,et al.  oStream: asynchronous streaming multicast in application-layer overlay networks , 2004, IEEE Journal on Selected Areas in Communications.

[23]  Massimo Gallo,et al.  Joint hop-by-hop and receiver-driven interest control protocol for content-centric networks , 2012, CCRV.

[24]  Ashok Erramilli,et al.  A reliable and efficient multicast for broadband broadcast networks , 1987, Computer Communication Review.

[25]  Alexander Afanasyev,et al.  Let's ChronoSync: Decentralized dataset state synchronization in Named Data Networking , 2013, 2013 21st IEEE International Conference on Network Protocols (ICNP).

[26]  Sally Floyd,et al.  Promoting the use of end-to-end congestion control in the Internet , 1999, TNET.

[27]  Yoav Tock,et al.  SpiderCast: a scalable interest-aware overlay for topic-based pub/sub communication , 2007, DEBS '07.

[28]  Srinivasan Seshan,et al.  Donnybrook: enabling large-scale, high-speed, peer-to-peer games , 2008, SIGCOMM '08.

[29]  Won So,et al.  Named data networking on a router: Fast and DoS-resistant forwarding with hash tables , 2013, Architectures for Networking and Communications Systems.

[30]  Kajal T. Claypool,et al.  Latency and player actions in online games , 2006, CACM.

[31]  Deborah Estrin,et al.  Named Data Networking (NDN) Project , 2010 .

[32]  R. J. Simcoe,et al.  Test configurations for fairness and other tests , 1994 .

[33]  Xu Yang,et al.  ACT: audio conference tool over named data networking , 2011, ICN '11.

[34]  Srinivasan Seshan,et al.  Mercury: a scalable publish-subscribe system for internet games , 2002, NetGames '02.

[35]  Sanjoy Paul,et al.  RMTP: a reliable multicast transport protocol , 1996, Proceedings of IEEE INFOCOM '96. Conference on Computer Communications.

[36]  Meral Shirazipour,et al.  StEERING: A software-defined networking for inline service chaining , 2013, 2013 21st IEEE International Conference on Network Protocols (ICNP).

[37]  Srinivasan Seshan,et al.  Colyseus: A Distributed Architecture for Online Multiplayer Games , 2006, NSDI.

[38]  Christophe Diot,et al.  Exploring Second Life , 2011, IEEE/ACM Transactions on Networking.

[39]  ZHANGLi-xia,et al.  A reliable multicast framework for light-weight sessions and application level framing , 1995 .

[40]  Bryan Ford,et al.  Unmanaged Internet Protocol , 2004, Comput. Commun. Rev..

[41]  Scott Shenker,et al.  A data-oriented (and beyond) network architecture , 2007, SIGCOMM 2007.

[42]  Alia Atlas,et al.  Fast Reroute Extensions to RSVP-TE for LSP Tunnels , 2005, RFC.

[43]  Pradeep Dubey,et al.  Second Life and the New Generation of Virtual Worlds , 2008, Computer.

[44]  Anne-Marie Kermarrec,et al.  Sub-2-Sub: Self-Organizing Content-Based Publish and Subscribe for Dynamic and Large Scale Collaborative Networks , 2006 .

[45]  Donald F. Towsley,et al.  An Analysis of a Point-to-Multipoint Channel Using a Go-Back-N Error Control Protocol , 1985, IEEE Trans. Commun..

[46]  Minlan Yu,et al.  SIMPLE-fying middlebox policy enforcement using SDN , 2013, SIGCOMM.

[47]  James Roberts,et al.  Flow-aware traffic control for a content-centric network , 2012, 2012 Proceedings IEEE INFOCOM.

[48]  Diego Perino,et al.  A reality check for content centric networking , 2011, ICN '11.

[49]  Christian Esteve Rothenberg,et al.  Towards a new generation of information-oriented internetworking architectures , 2008, CoNEXT '08.

[50]  Minlan Yu,et al.  Scalable flow-based networking with DIFANE , 2010, SIGCOMM 2010.

[51]  George C. Polyzos,et al.  MultiCache: An overlay architecture for information-centric networking , 2011, Comput. Networks.

[52]  Rob Sherwood,et al.  The controller placement problem , 2012, HotSDN@SIGCOMM.

[53]  Don Brutzman,et al.  MBONE, the Multicast BackbONE , 1994 .

[54]  Yanlei Diao,et al.  Towards an Internet-Scale XML Dissemination Service , 2004, VLDB.

[55]  Djamel Sadok,et al.  Traffic Analysis Beyond This World: the Case of Second Life , 2007 .

[56]  George Pavlou,et al.  Modelling and Evaluation of CCN-Caching Trees , 2011, Networking.

[57]  Charles E. Perkins,et al.  A Mobile Host Protocol Supporting Route Optimization and Authentication , 1995, IEEE J. Sel. Areas Commun..

[58]  Lan Wang,et al.  OSPFN: An OSPF Based Routing Protocol for Named Data Networking , 2012 .

[59]  Scott Shenker,et al.  Internet indirection infrastructure , 2002, SIGCOMM 2002.

[60]  Michael Walfish,et al.  A layered naming architecture for the internet , 2004, SIGCOMM '04.

[61]  M. Grossglauser,et al.  Distrust and Privacy: Axioms for Multicast Congestion Control , 1999 .

[62]  Brian E. Carpenter,et al.  Middleboxes: Taxonomy and Issues , 2002, RFC.

[63]  Pekka Nikander,et al.  Developing Information Networking Further: From PSIRP to PURSUIT , 2010, BROADNETS.

[64]  George Pavlou,et al.  CCTCP: A scalable receiver-driven congestion control protocol for content centric networking , 2013, 2013 IEEE International Conference on Communications (ICC).

[65]  SoWon,et al.  Named data networking on a router , 2013 .

[66]  Mark Handley,et al.  Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised) , 2016, RFC.

[67]  Jörg Ott,et al.  On content-centric router design and implications , 2010, ReARCH '10.

[68]  Michael Walfish,et al.  Middleboxes No Longer Considered Harmful , 2004, OSDI.

[69]  Murat Yuksel,et al.  Cross-layer failure restoration of IP multicast with applications to IPTV , 2011, Comput. Networks.

[70]  Sanjoy Paul,et al.  Multicast transport protocols for high speed networks , 1994, Proceedings of ICNP - 1994 International Conference on Network Protocols.

[71]  Wu-chi Feng,et al.  A traffic characterization of popular on-line games , 2005, IEEE/ACM Transactions on Networking.

[72]  Gwendal Simon,et al.  Solipsis: A Massively Multi-Participant Virtual World , 2003, PDPTA.

[73]  Jon Crowcroft,et al.  TCP-like congestion control for layered multicast data transfer , 1998, Proceedings. IEEE INFOCOM '98, the Conference on Computer Communications. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Gateway to the 21st Century (Cat. No.98.

[74]  Steven McCanne,et al.  Receiver-driven layered multicast , 2001 .

[75]  Min Zhu,et al.  B4: experience with a globally-deployed software defined wan , 2013, SIGCOMM.

[76]  Bin Liu,et al.  On Pending Interest Table in Named Data Networking , 2012, 2012 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS).

[77]  K. K. Ramakrishnan,et al.  Over the top video: the gorilla in cellular networks , 2011, IMC '11.

[78]  Kostas Pentikousis,et al.  Design considerations for a network of information , 2008, CoNEXT '08.

[79]  Pekka Nikander,et al.  Host Identity Protocol (HIP) Architecture , 2006, RFC.

[80]  Maximilian Ott,et al.  XML-based semantic multicast routing: an overlay network architecture for future information services , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[81]  Robbert van Renesse,et al.  Astrolabe: A robust and scalable technology for distributed system monitoring, management, and data mining , 2003, TOCS.

[82]  Kirk L. Johnson,et al.  Overcast: reliable multicasting with on overlay network , 2000, OSDI.

[83]  Scott Shenker,et al.  Revisiting IP multicast , 2006, SIGCOMM 2006.

[84]  Roberto Beraldi,et al.  TERA: topic-based event routing for peer-to-peer architectures , 2007, DEBS '07.

[85]  Van Jacobson,et al.  Networking named content , 2009, CoNEXT '09.

[86]  Shun-Yun Hu,et al.  VON: a scalable peer-to-peer network for virtual environments , 2006, IEEE Network.

[87]  A. Robert Calderbank,et al.  The effectiveness of intelligent scheduling for multicast video-on-demand , 2009, ACM Multimedia.

[88]  Kevin C. Almeroth,et al.  Scalable delivery of Web pages using cyclic best-effort multicast , 1998, Proceedings. IEEE INFOCOM '98, the Conference on Computer Communications. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Gateway to the 21st Century (Cat. No.98.

[89]  Fernando Pedone,et al.  End-to-end reliability for best-effort content-based publish/subscribe networks , 2011, DEBS '11.

[90]  Jörg Ott,et al.  ConTug: A Receiver-Driven Transport Protocol for Content-Centric Networks , 2010 .

[91]  Mischa Schwartz,et al.  Multidestination Protocols for Satellite Broadcast Channels , 1985, IEEE Trans. Commun..

[92]  Anja Feldmann,et al.  Logically centralized?: state distribution trade-offs in software defined networks , 2012, HotSDN '12.

[93]  Martín Casado,et al.  Onix: A Distributed Control Platform for Large-scale Production Networks , 2010, OSDI.

[94]  Nicola Blefari-Melazzi,et al.  Transport-layer issues in information centric networks , 2012, ICN '12.

[95]  Yin Zhang,et al.  XTreeNet: scalable overlay networks for XML content dissemination and querying (synopsis) , 2005, 10th International Workshop on Web Content Caching and Distribution (WCW'05).

[96]  Kirk Lougheed,et al.  Border Gateway Protocol (BGP) , 2021, IP Routing Protocols.

[97]  Joe Abley,et al.  Operation of Anycast Services , 2006, RFC.

[98]  Dah Ming Chiu,et al.  TRAM: A Tree-based Reliable Multicast Protocol , 1998 .

[99]  Nick McKeown,et al.  OpenFlow: enabling innovation in campus networks , 2008, CCRV.

[100]  Matteo Varvello,et al.  P2P Second Life: Experimental Validation Using Kad , 2009, IEEE INFOCOM 2009.

[101]  Thomas Silverston,et al.  Towards Popularity-Based Caching in Content Centric Networks , 2012 .

[102]  Dario Rossi,et al.  Caching performance of content centric networks under multi-path routing (and more) , 2011 .

[103]  Diana K. Smetters,et al.  VoCCN: voice-over content-centric networks , 2009, ReArch '09.

[104]  K. K. Ramakrishnan,et al.  A binary feedback scheme for congestion avoidance in computer networks with a connectionless network layer , 1988, SIGCOMM '88.

[105]  Vyas Sekar,et al.  Making middleboxes someone else's problem: network processing as a cloud service , 2012, SIGCOMM '12.

[106]  Bill Segall,et al.  Content Based Routing with Elvin4 , 2000 .

[107]  Roy T. Fielding,et al.  Uniform Resource Identifier (URI): Generic Syntax , 2005, RFC.

[108]  Massimo Gallo,et al.  ICP: Design and evaluation of an Interest control protocol for content-centric networking , 2012, 2012 Proceedings IEEE INFOCOM Workshops.

[109]  Bernard Chazelle,et al.  The Bloomier filter: an efficient data structure for static support lookup tables , 2004, SODA '04.

[110]  Luigi Rizzo,et al.  pgmcc: a TCP-friendly single-rate multicast congestion control scheme , 2000, SIGCOMM.

[111]  Emin Gün Sirer,et al.  Corona: A High Performance Publish-Subscribe System for the World Wide Web , 2006, NSDI.

[112]  K. K. Ramakrishnan,et al.  NetVM: High Performance and Flexible Networking Using Virtualization on Commodity Platforms , 2014, IEEE Transactions on Network and Service Management.