Protocol for the Standardisation of Transcriptional Measurements

[1]  Samie R. Jaffrey,et al.  A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat RNA , 2013, Nature Methods.

[2]  In vivo and in vitro characterization of σ70 constitutive promoters by real-time PCR and fluorescent measurements. , 2013, Methods in molecular biology.

[3]  D. Endy,et al.  Refinement and standardization of synthetic biological parts and devices , 2008, Nature Biotechnology.

[4]  Leonore A Herzenberg,et al.  Interpreting flow cytometry data: a guide for the perplexed , 2006, Nature Immunology.

[5]  Sylvestre Marillonnet,et al.  Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system , 2012 .

[6]  Christopher A. Voigt,et al.  Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca , 2012, Proceedings of the National Academy of Sciences.

[7]  Drew Endy,et al.  Precise and reliable gene expression via standard transcription and translation initiation elements , 2013, Nature Methods.

[8]  Vivek K. Mutalik,et al.  Composability of regulatory sequences controlling transcription and translation in Escherichia coli , 2013, Proceedings of the National Academy of Sciences.

[9]  Drew Endy,et al.  Measuring the activity of BioBrick promoters using an in vivo reference standard , 2009, Journal of biological engineering.

[10]  Vivek K. Mutalik,et al.  Measurement and modeling of intrinsic transcription terminators , 2013, Nucleic acids research.

[11]  T. Hwa,et al.  Growth Rate-Dependent Global Effects on Gene Expression in Bacteria , 2009, Cell.

[12]  F. Ceroni,et al.  The spinach RNA aptamer as a characterization tool for synthetic biology. , 2014, ACS synthetic biology.

[13]  F. Neidhardt,et al.  Culture Medium for Enterobacteria , 1974, Journal of bacteriology.

[14]  Stefano Cardinale,et al.  Effects of genetic variation on the E. coli host-circuit interface. , 2013, Cell reports.

[15]  Richard M. Murray,et al.  Rapidly Characterizing the Fast Dynamics of RNA Genetic Circuitry with Cell-Free Transcription–Translation (TX-TL) Systems , 2014, ACS synthetic biology.

[16]  S. Klumpp Growth-Rate Dependence Reveals Design Principles of Plasmid Copy Number Control , 2011, PloS one.

[17]  Meghdad Hajimorad,et al.  BglBrick vectors and datasheets: A synthetic biology platform for gene expression , 2011, Journal of biological engineering.

[18]  Adam P Arkin,et al.  RNA processing enables predictable programming of gene expression , 2012, Nature Biotechnology.

[19]  Tom Ellis,et al.  One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy , 2013, Nucleic acids research.

[20]  Paul S. Freemont,et al.  Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology , 2013, Nucleic acids research.

[21]  Joseph H. Davis,et al.  Design, construction and characterization of a set of insulated bacterial promoters , 2010, Nucleic acids research.

[22]  A S Verkman,et al.  Green fluorescent protein as a noninvasive intracellular pH indicator. , 1998, Biophysical journal.

[23]  Christopher A. Voigt,et al.  Ribozyme-based insulator parts buffer synthetic circuits from genetic context , 2012, Nature Biotechnology.

[24]  Vincent Noireaux,et al.  Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. , 2014, ACS synthetic biology.

[25]  Christian R. Boehm,et al.  Unique nucleotide sequence–guided assembly of repetitive DNA parts for synthetic biology applications , 2014, Nature Protocols.