Highlights of the spectroscopy, photochemistry and electrochemistry of [M(CO)4(α-diimine)] complexes, M=Cr, Mo, W

Abstract Tetracarbonyl-diimine complexes [M(CO) 4 (α-diimine)] (M=Cr, Mo, W; α-diimine=polypyridyl (bpy, phen), pyridine-2-carbaldehyde (R-PyCa) or 1,4-diaza-butadiene, (R-DAB)) have very interesting structural, spectroscopic, electrochemical and photochemical properties. Their comprehensive experimental and theoretical investigations have important implications for our understanding of the chemistry of organometallic complexes with noninnocent ligands. The most interesting physical and chemical aspects of [M(CO) 4 (α-diimine)] complexes, which have more general relevance, are highlighted and discussed.

[1]  A. Vlček,et al.  Bond activation by mlct excitation of organometallic compounds: prompt co-photodissociation from [cr(co)4bpy] , 1994 .

[2]  D. J. Stufkens The Remarkable Properties of α-Diimine Rhenium Tricarbonyl Complexes in Their Metal-to-Ligand Charge-Transfer (MLCT) Excited States , 1992 .

[3]  S. Ernst,et al.  3,3′-Bipyridazine: the ‘second-best’ bidiazine ligand for M(CO)4 fragments (M = Cr, Mo, W) , 1986 .

[4]  A. Lees,et al.  Emission and photochemistry of M(CO)4(diimine) (M = chromium, molybdenum, tungsten) complexes in room-temperature solution , 1986 .

[5]  D. Miholová,et al.  Electrode-catalyzed substitution of M(CO)4bipy (M = Cr, Mo, W) initiated by reduction , 1985 .

[6]  K. Goubitz,et al.  Syntheses, structures and spectroscopic properties of novel inorganometallic complexes Ru(E)(E′)(CO)2(iPr-DAB) , 1997 .

[7]  D. J. Stufkens,et al.  Ligand-dependent excited state behaviour of Re(I) and Ru(II) carbonyl–diimine complexes , 1998 .

[8]  S. Ernst,et al.  What determines the solvatochromism of metal-to-ligand charge transfer transitions? A demonstration involving 17 tungsten carbonyl complexes , 1987 .

[9]  J. Fujita,et al.  Spectroscopic Studies of Mixed Amine Carbonyl Complexes of d6 Structure. I. Visible and Ultraviolet Absorption Spectra of Diamine-tetracarbonyl Complexes of Chromium(0), Molybdenum(0) and Tungsten(0) , 1968 .

[10]  Martyn C. R. Symons,et al.  Chemical and Biochemical Aspects of Electron Spin Resonance Spectroscopy , 1978 .

[11]  A. Lees,et al.  Solvent and substituent effects on the lowest energy excited states of M(CO)4 (diimine) (M=Cr, Mo, W) complexes , 1983 .

[12]  A. Vlček,et al.  Photochemistry of Cr(CO)4(bpy) (bpy = 2,2‘-Bipyridine) Studied by Time-Resolved Infrared Spectroscopy , 1996 .

[13]  D. J. Stufkens,et al.  Changes in excited-state character of [M(L 1 )(L 2 )(CO) 2 (α-diimine)] (M=Ru, Os) induced by variation of L 1 and L 2 , 2000 .

[14]  M. Aarnts,et al.  Excited states of metal-metal bonded diimine complexes vary from extremely long lived to very reactive with formation of radicals or zwitterions , 1998 .

[15]  R. Eldik,et al.  Solvent, ligand, pressure, and temperature effects on charge-transfer spectra of tetracarbonylmolybdenum(0) diimine complexes , 1987 .

[16]  D. J. Stufkens,et al.  Electronic absorption and resonance Raman spectra of tricarbonyl(p-tolyl-1,4-diaza-1,3-butadiene)halorhenium. Evidence for a lowest ligand to ligand charge-transfer (LLCT) transition , 1992 .

[17]  J. Yeston,et al.  The Mechanism of a C-H Bond Activation Reaction in Room-Temperature Alkane Solution , 1997 .

[18]  S. Ernst,et al.  Correlation between solvatochromism and back-bonding in four isomeric (α-diimine)M(CO)4 complexes, M = Cr, Mo, W , 1986 .

[19]  D. J. Stufkens,et al.  A study of the electronic properties of M(CO)4DAB (M = Cr, Mo, W; DAB = diazabutadiene). I. electronic `absorption, resonance raman, infrared, 13C- and 15N-NMR spectra , 1978 .

[20]  D. J. Stufkens,et al.  Structural and spectroscopic properties of [(CO)5MM′ (CO)3(R-DAB)] (M,M′=Mn,Re; R-DAB=1,4-diaza-1,3-butadiene complexes. X-ray structure of [(CO)5ReMn(CO)3-(i-Pr-DAB)] and infrared and resonance Raman spectra of [(CO)5MM′(CO)3(R-DAB)] , 1985 .

[21]  H. T. Dieck,et al.  Zur Komplexchemie von Vierzentren‐π‐Systemen, IX. 2,2′‐Bipyridyl – ein „schlechter Ligand”︁ für Metalle in niedrigen Oxidationsstufen , 1975 .

[22]  W. Kaim,et al.  Electrochemical oxidation of [Cr(CO)4(tmp)] to the low-spin Cr(I) species [Cr(CO)4(tmp)]+ (tmp=3,4,7,8-tetramethyl-1,10-phenanthroline): an IR, UV–Vis, and EPR spectroelectrochemical and DFT computational study of the accompanying changes in molecular and electronic structure , 2001 .

[23]  B. Rossenaar,et al.  Halide-Dependent Change of the Lowest-Excited-State Character from MLCT to XLCT for the Complexes Re(X)(CO)3(α-diimine) (X = Cl, Br, I; α-diimine = bpy, iPr-PyCa, iPr-DAB) Studied by Resonance Raman, Time-Resolved Absorption, and Emission Spectroscopy , 1996 .

[24]  S. Ernst,et al.  Coordination characteristics of four isomeric .alpha.-diimine ligands. .pi. Molecular orbital perturbation calculations for the bidiazines and their correlation with the properties of group 6 metal carbonyl complexes , 1986 .

[25]  D. J. Stufkens,et al.  A study of the electronic properties of M(CO)4DAB (M = Cr, Mo, W; DAB = diazabutadiene). II. Conformational change below 200 K as evidenced from absorption and resonance raman spectra , 1979 .

[26]  S. Ernst,et al.  ESR and ENDOR study of three isomeric bidiazine anion radicals and of their Group 6 metal carbonyl complexes. Coordinative effects on the spin distribution , 1986 .

[27]  R. Eldik,et al.  Systematic Tuning of the Photosubstitution Mechanism of M(CO)4(1,10-phenanthroline) by Variation of the Metal, Entering Nucleophile, Excitation Wavelength, and Pressure , 1998 .

[28]  A. Lees,et al.  PHOTOCHEMICAL C-H BOND ACTIVATION REACTIVITY OF (HBPZ'3)RH(CO)2 (PZ' = 3,5-DIMETHYLPYRAZOLYL) IN ALKANE SOLUTIONS , 1996 .

[29]  N. Veldman,et al.  Syntheses, structures and spectroscopic properties of a novel series of metalmetal bonded complexes Ru(E)(E′)(CO)2(iPrDAB): (E Br, E′ Mn(CO)5; E SnPh3, E′ Mn(CO)5, Re(CO)5, CO(CO)4; E Me, E′ Re(CO)5; E E′ Mn(CO)5, Re(CO)5; iPrDAB N,N′-diisopropyl-1,4-diaza-1,3-butadiene) , 1997 .

[30]  T. Lian,et al.  ULTRAFAST DYNAMICS OF CP*M(CO)2 (M = IR, RH) IN SOLUTION : THE ORIGIN OF THE LOW QUANTUM YIELDS FOR C-H BOND ACTIVATION , 1996 .

[31]  Y. Kaizu,et al.  Complexes Coordinated by 2,2′-Bipyridine Negative Ion. II. Sodium 2,2′-Bipyridinetetracarbonylchromium, -molybdenum, and -wolfram , 1972 .

[32]  D. J. Stufkens,et al.  The remarkable influence of X and R on the charge transfer character (MLCT or XLCT) of the complexes Ru(X)(R)(CO)sub2(L) (X=halide, triflate;R=alkyl; L=alpha-diimine: an UV-Vis absorption and resonance raman study , 1994 .

[33]  K. Goubitz,et al.  Synthesis and spectroscopic properties of Re(R)(CO)3(α-diimine) (R alkyl; α-diimine R′-pyCa, R′-DAB) complexes. Crystal structure of Re(Me) (CO)3 (iPr-DAB) , 1995 .

[34]  W. Kaim,et al.  Semireduced bridging ligands containing -N―N- multiple bond coordination sites. ESR study of binuclear group 6 metal carbonyl complexes , 1986 .

[35]  D. J. Stufkens,et al.  A mechanistic study of the photochemistry of Fe(CO)3(R-DAB) (R-DAB=1,4-diaza-1,3-butadiene), a unique group of complexes with two close-lying reactive excited states , 1989 .

[36]  A. Vlček,et al.  Mechanisms of ultrafast metal–ligand bond splitting upon MLCT excitation of carbonyl-diimine complexes , 2000 .

[37]  D. J. Stufkens,et al.  Spectroscopy, photophysics and photochemistry of zerovalent transition metal α-diimine complexes , 1990 .

[38]  J. Yeston,et al.  Sub-Picosecond IR Study of the Reactive Intermediate in an Alkane C−H Bond Activation Reaction by CpRh(CO)2 , 1998 .

[39]  M. Aarnts,et al.  A new series of Re- and Ru-complexes having a lowest σπ* excited state that varies from reactive to stable and long lived , 1997 .

[40]  A. Lees Luminescence properties of organometallic complexes , 1987 .

[41]  J. Fujita,et al.  Spectroscopic Studies of Mixed Amine Carbonyl Complexes of d6 Structure. II. Solvent Effect on the Ultraviolet and Visible Absorption Spectra of Diamine-tetracarbonyl Complexes of Chromium(0), Molybdenum(0) and Tungsten(0) , 1968 .

[42]  M. W. George,et al.  Structural Investigation of the Ground and Excited States of ClRe(CO)3(4,4'-bipyridyl)2 using Vibrational Spectroscopy , 1994 .

[43]  D. J. Stufkens,et al.  Tuning the excited-state properties of [M(SnR3)2(CO)2(alpha-diimine)] (M = Ru, Os; R = Me, Ph). , 2001, Inorganic chemistry.

[44]  B. Weimann,et al.  Dissociative CO Photosubstitution in M(CO)4(1,4-diazabutadiene) Complexes (M = W, Mo) by an Olefin Affording Novel fac-M(CO)3(1,4-diazabutadiene)(η2-olefin) Derivatives , 2001 .

[45]  A. Vlček,et al.  Bonding Properties of the 1,2-Semiquinone Radical-Anionic Ligand in the [M(CO)(4-n)(L)(n)(DBSQ)] Complexes (M = Re, Mn; DBSQ = 3,5-di-tert-butyl-1,2-benzosemiquinone; n = 0, 1, 2). A Comprehensive Spectroscopic (UV-Vis and IR Absorption, Resonance Raman, EPR) and Electrochemical Study. , 1996, Inorganic chemistry.

[46]  P. Matousek,et al.  Femtosecond Spectroscopic Study of MLCT Excited-State Dynamics of Cr(CO)4(bpy): Excitation-Energy-Dependent Branching between CO Dissociation and Relaxation , 1999 .

[47]  A. Lees,et al.  Solvatochromism of the metal to ligand charge-transfer transitions of zerovalent tungsten carbonyl complexes , 1986 .

[48]  A. Lees,et al.  Photophysical properties of M(CO)4(.alpha.,.alpha.'-diimine) (M = molybdenum, tungsten) complexes , 1989 .

[49]  D. J. Stufkens,et al.  Steric and electronic effects on the quantum yield of photosubstitution of CO in W(CO)4(α-diimine) complexes , 1985 .

[50]  W. Kaim The transition metal coordination chemistry of anion radicals , 1987 .

[51]  A. Vlček Mechanistic roles of metal-to-ligand charge-transfer excited states in organometallic photochemistry , 1998 .

[52]  K. Goubitz,et al.  Synthesis and characterization of new dinuclear complexes (CO)5MnRe(CO)3(L) (L= 2,2'-Bipyromidine, 2,3-Bis(2-pyridyl)pyrazine) and trinuclear compounds (CO)5MnRe(CO)3(L)R (R = Re(Br)(CO)3, W(CO)4). Evidence for asymmetric distortion of the bridging 2,2'- , 1995 .

[53]  A. Vlček,et al.  Ground and electronically excited states of Cr(CO)4(bipyridine): energy factored force field analysis of CO stretching vibrations and resonance Raman study , 1998 .

[54]  D. J. Stufkens,et al.  Bonding properties of Mo(CO)4-xL(PR3)x (x = 0, 1, 2; L =diazabutadiene, pyridine-2-carbaldehyde imine and 2,2′-bipyridine). Infrared, electronic absorption, 1H, 13C and 31P NMR and resonanceraman spectra , 1978 .

[55]  A. Vlček,et al.  Wavelength-dependent photosubstitution and excited-state dynamics of [Cr(CO)4(2,2'-bipyridine)]: a quantum yield and picosecond absorption study , 1992 .

[56]  W. Kaim Mono- and binuclear tri- and tetracarbonyl complexes of chromium(0), molybdenum(0), and tungsten(0) with the 2,2'-bipyrimidine radical anion , 1984 .

[57]  D. Guillaumont,et al.  Electronic Structure of the Lowest Excited States of Cr(CO)(4)(2,2'-bipyridine): A CASSCF/CASPT2 Analysis. , 1997, Inorganic chemistry.

[58]  D. J. Stufkens Resonance raman spectra and photochemical reactivity of transition metal α-diimine complexes , 1982 .

[59]  A. Lees,et al.  Wavelength-Dependent Photochemistry of W(CO)4(en) (en = Ethylenediamine): Evidence for Distinct Chemical Reactivities from Singlet and Triplet Ligand Field Excited States , 1998 .

[60]  J. Hanzlík,et al.  Electrochemical oxidation of cis-[Mo(CO)4(2,2′-bipyridine)] coupled with ligand substitution reactions in non-aqueous solvents , 1992 .

[61]  D. Morse,et al.  The nature of the lowest excited state and photosubstitution reactivity of tetracarbonyl-1,10-phenanthrolinetungsten(0) and related complexes , 1975 .

[62]  T. Mack,et al.  Intramolekularer cis/trans-Austausch von Carbonylliganden in (LL)M(CO)4-Komplexen , 1975 .

[63]  D. J. Stufkens,et al.  Detection and assignment of different electronic transitions within the first CT band of M(CO)4L (M = Cr, Mo, W; L 1,4-diazabutadiene (DAB) and pyridine-2-carbaldehydeirnine (PyCa)) with the use of resonance raman and MCD spectra , 1979 .

[64]  R. Eldik,et al.  Photo-substitution reactions of Cr(CO)4(1,10-phenanthroline). Mechanistic information from entering nucleophile, irradiation wavelength and pressure dependences , 1996 .

[65]  D. J. Stufkens,et al.  Synthesis, spectroscopic properties and photochemistry of [Re(R)(CO)3(4,4'-Me2-bpy)] (R=alkyl) complexes , 1999 .

[66]  A. Lees,et al.  Reinvestigation of the visible absorption bands of the 2,2′-bipyrimidine complexes W(CO)4(bpym) and (μ-bpym)[M(CO)4]2 (M=Mo, W) with resonance Raman spectroscopy; the emission spectrum of (μ-bpym)[Mo(CO)4]2 , 1993 .

[67]  E. Baerends,et al.  The sigma-pi* electronic transition of the complexes Ru(E)(E')(CO)2(iPr-DAB): a resonance Raman, electronic absorption, emission and density functional study (E=Me, SnPh3, Mn(CO)5, E'=M(CO)5; M=MN, Re; iPr-DAB = N,N'-diiosopropyl-1,4-diaza-1,3-butadiene). , 1997 .

[68]  J. Slageren,et al.  Time-resolved emission spectra and TD-DFT excited-state calculations of [W(CO)4(1,10-phenanthroline)] and [W(CO)4(3,4,7,8-tetramethyl-1,10-phenanthroline)] , 2001 .

[69]  W. Kaim,et al.  Four bridging bis chelate ligands with very low lying .pi.* orbitals. MO perturbation calculations, electrochemistry, and spectroscopy of mononuclear and binuclear group 6 metal tetracarbonyl complexes , 1987 .