Efficient Markov chain Monte Carlo with incomplete multinomial data
暂无分享,去创建一个
[1] G. Roberts,et al. Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .
[2] G. Roberts,et al. Approximate Predetermined Convergence Properties of the Gibbs Sampler , 2001 .
[3] D. Spiegelhalter,et al. Bayesian Analysis of Realistically Complex Models , 1996 .
[4] Y. Amit. Convergence properties of the Gibbs sampler for perturbations of Gaussians , 1996 .
[5] Kung-Sik Chan,et al. A Note on Bayesian Inference with Incomplete Multinomial Data with Applications for Assessing the Spatio-Temporal Variation in Pathogen-Variant Diversity , 2006 .
[6] A. Brix. Bayesian Data Analysis, 2nd edn , 2005 .
[7] Jun S. Liu,et al. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .
[8] Jeffrey S. Rosenthal,et al. Convergence Rates for Markov Chains , 1995, SIAM Rev..
[9] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.
[10] J. Rosenthal. Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .
[11] Kung-Sik Chan. Asymptotic behavior of the Gibbs sampler , 1993 .
[12] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[13] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .