Spin crossover and iron-rich silicate melt in the Earth’s deep mantle

[1]  E. Knittle The Solid/Liquid Partitioning of Major and Radiogenic Elements at Lower Mantle Pressures: Implications for the Core‐Mantle Boundary Region , 2013 .

[2]  Geoffrey E. Hinton,et al.  Melting of Peridotite to 140 Gigapascals , 2010, Science.

[3]  Y. Ohishi,et al.  High-temperature compression of ferropericlase and the effect of temperature on iron spin transition , 2010 .

[4]  J. Jackson,et al.  Very low sound velocities in iron‐rich (Mg,Fe)O: Implications for the core‐mantle boundary region , 2010 .

[5]  J. Hernlund,et al.  Dynamics and structure of a stirred partially molten ultralow-velocity zone , 2010 .

[6]  D. Rubie,et al.  Iron Partitioning and Density Changes of Pyrolite in Earth’s Lower Mantle , 2010, Science.

[7]  Kerry Gallagher,et al.  Thermochemical interpretation of 1-D seismic data for the lower mantle: The significance of nonadiabatic thermal gradients and compositional heterogeneity , 2009 .

[8]  M. Fialin,et al.  Disproportionation of Fe2+ in Al-free silicate perovskite in the laser heated diamond anvil cell as recorded by electron probe microanalysis of oxygen , 2009 .

[9]  G. Morard,et al.  Density profile of pyrolite under the lower mantle conditions , 2009 .

[10]  L. Stixrude Thermodynamics of silicate liquids in the deep Earth (Invited) , 2009 .

[11]  K. Hirose,et al.  The advanced ion-milling method for preparation of thin film using ion slicer: application to a sample recovered from diamond-anvil cell. , 2009, The Review of scientific instruments.

[12]  S. Hier‐Majumder Influence of contiguity on seismic velocities of partially molten aggregates , 2008 .

[13]  S. Muto,et al.  Energy-drift correction of electron energy-loss spectra from prolonged data accumulation of low SNR signals. , 2008, Journal of Electron Microscopy.

[14]  Y. Cai,et al.  Thermally activated charge transfer in a Prussian blue derivative probed by resonant inelastic x-ray scattering , 2008 .

[15]  A. Addad,et al.  Element partitioning between magnesium silicate perovskite and ferropericlase: New insights into bulk lower-mantle geochemistry , 2008 .

[16]  M. Kunz,et al.  Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar , 2008 .

[17]  L. Stixrude,et al.  Thermodynamics, structure, dynamics, and freezing of Mg2SiO4 liquid at high pressure , 2008 .

[18]  Kristin A. Persson,et al.  Ab initio study of the composition dependence of the pressure-induced spin crossover in perovskite (Mg1 − x,Fex)SiO3 , 2008 .

[19]  John Hernlund,et al.  On the statistical distribution of seismic velocities in Earth's deep mantle , 2008 .

[20]  N. Coltice,et al.  A crystallizing dense magma ocean at the base of the Earth’s mantle , 2007, Nature.

[21]  T. Ahrens,et al.  Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite , 2007 .

[22]  Stefano de Gironcoli,et al.  Spin transition in magnesiowüstite in earth's lower mantle. , 2006, Physical review letters.

[23]  H. Mao,et al.  Spin transition of iron in magnesiowüstite in the Earth's lower mantle , 2005, Nature.

[24]  B. Wood,et al.  Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir , 2005 .

[25]  B. Wood,et al.  Compositional effects on element partitioning between Mg-silicate perovskite and silicate melts , 2005 .

[26]  K. D. Jayasuriya,et al.  A Mössbauer study of the oxidation state of Fe in silicate melts , 2004 .

[27]  Y. Akahama,et al.  High-pressure Raman spectroscopy of diamond anvils to 250GPa: Method for pressure determination in the multimegabar pressure range , 2004 .

[28]  M. Thorne,et al.  Inferences on ultralow‐velocity zone structure from a global analysis of SPdKS waves , 2004 .

[29]  M. Walter,et al.  Melting experiments of mantle materials under lower mantle conditions with implications for magma ocean differentiation , 2004 .

[30]  Guillaume Fiquet,et al.  Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity , 2003, Science.

[31]  K. Hirose Phase transitions in pyrolitic mantle around 670‐km depth: Implications for upwelling of plumes from the lower mantle , 2002 .

[32]  C. Agee CRYSTAL-LIQUID DENSITY INVERSIONS IN TERRESTRIAL AND LUNAR MAGMAS , 1998 .

[33]  M. Walter,et al.  Liquidus phase relations in the system MgO–MgSiO3 at pressures up to 25 GPa—constraints on crystallization of a molten Hadean mantle , 1998 .

[34]  C. McCammon Perovskite as a possible sink for ferric iron in the lower mantle , 1997, Nature.

[35]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[36]  E. Garnero,et al.  Seismic Evidence for Partial Melt at the Base of Earth's Mantle , 1996, Science.

[37]  E. Takahashi Melting of a dry peridotite KLB‐1 up to 14 GPa: Implications on the Origin of peridotitic upper mantle , 1986 .

[38]  Bradford H. Hager,et al.  Melt segregation from partially molten source regions: The importance of melt density and source region size , 1981 .

[39]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[40]  Bijaya B. Karki,et al.  First-Principles Molecular Dynamics Simulations of Silicate Melts: Structural and Dynamical Properties , 2010 .

[41]  Y. Ohishi,et al.  Experimental study of reaction between perovskite and molten iron to 146 GPa and implications for chemically distinct buoyant layer at the top of the core , 2009 .

[42]  G. Walter,et al.  Structure and Dynamical Properties , 1999 .

[43]  P. V. van Aken,et al.  Quantitative determination of iron oxidation states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy , 1998 .