Geochemistry, zircon U-Pb chronology and Hf isotope composition of the Heishan’gou iron deposit in the Bikou Terrane, central China: Implication for the genesis of the Yudongzi banded iron formations

[1]  Weiqiang Li,et al.  Genesis of the Fulu Cryogenian iron formation in South China: Synglacial or interglacial? , 2022, Precambrian Research.

[2]  San-zhong Li,et al.  Trace element and isotope (C, S, Sr, Nd, Fe) geochemistry constraints on the sedimentary environment of the early Neoproterozoic Shilu BIF and associated dolostones, South China , 2022, Precambrian Research.

[3]  Yunpeng Dong,et al.  Petrogenesis and tectonic implications of the Neoproterozoic mafic intrusions in the Bikou Terrane along the northwestern margin of the Yangtze Block, South China , 2021, Ore Geology Reviews.

[4]  F. Pirajno,et al.  Cycles of hydrothermal activity, precipitation of chemical sediments, with special reference to Algoma-type BIF , 2021 .

[5]  M. Bau,et al.  Banded iron formation from Antarctica: The 2.5 Ga old Mt. Ruker BIF and the antiquity of lanthanide tetrad effect and super-chondritic Y/Ho ratio in seawater , 2020 .

[6]  Chang‐Zhi Wu,et al.  Neoproterozoic non-glaciogenic iron formation: Insights from Fe isotope and elemental geochemistry of the Shalong iron formation from the Central Tianshan block, southern Altaids , 2020 .

[7]  F. Gao,et al.  Further constraints on a Neoproterozoic active continental margin from sandstones of the Hengdan Group in the Bikou Terrane, northwestern margin of the Yangtze Block, South China , 2020 .

[8]  Jun Hu,et al.  U-Pb zircon geochronology and geochemistry of metavolcanics and associated iron ores of the magnetite-rich BIF deposits in the Western Kunlun orogenic belt: Constraints on the depositional age, origin and tectonic setting , 2020 .

[9]  G. Shields,et al.  Termination of Cryogenian ironstone deposition by deep ocean euxinia , 2020 .

[10]  Lianchang Zhang,et al.  Geochemistry of meta-sedimentary rocks associated with the Neoarchean Dagushan BIF in the Anshan-Benxi area, North China Craton: Implications for their provenance and tectonic setting , 2019, Precambrian Research.

[11]  Jun Wang,et al.  Episodic crustal growth and reworking of the Yudongzi terrane, South China: Constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites , 2019, Lithos.

[12]  M. Santosh,et al.  The Neoproterozoic “Blood Falls” in Tarim Craton and Their Possible Connection With Snowball Earth , 2019, Journal of Geophysical Research: Earth Surface.

[13]  M. Santosh,et al.  Discovery of the Huronian Glaciation Event in China: Evidence from glacigenic diamictites in the Hutuo Group in Wutai Shan , 2019, Precambrian Research.

[14]  T. Zhao,et al.  Geochemistry, U-Pb zircon geochronology and Sm-Nd isotopes of the Xincai banded iron formation in the southern margin of the North China Craton: Implications on Neoarchean seawater compositions and solute sources , 2017, Precambrian Research.

[15]  N. Planavsky,et al.  Origin of the Neoproterozoic Fulu iron formation, South China: Insights from iron isotopes and rare earth element patterns , 2018, Geochimica et Cosmochimica Acta.

[16]  Jianping Zheng,et al.  Identification of ca. 2.65 Ga TTGs in the Yudongzi complex and its implications for the early evolution of the Yangtze Block , 2018, Precambrian Research.

[17]  N. Planavsky,et al.  Earth’s youngest banded iron formation implies ferruginous conditions in the Early Cambrian ocean , 2018, Scientific Reports.

[18]  Dunyi Liu,et al.  Formation and evolution of the Archean continental crust of China: A review , 2018 .

[19]  T. Yang,et al.  Updating the Geologic Barcodes for South China: Discovery of Late Archean Banded Iron Formations in the Yangtze Craton , 2017, Scientific Reports.

[20]  Yunpeng Dong,et al.  Zircon U–Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean-Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze craton, China , 2017 .

[21]  M. Santosh,et al.  Volcano-sedimentary and metallogenic records of the Dharwar greenstone terranes, India: Window to Archean plate tectonics, continent growth, and mineral endowment , 2017 .

[22]  Honglin Yuan,et al.  Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS , 2017 .

[23]  A. Bekker,et al.  Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history , 2017 .

[24]  Yan‐jing Chen,et al.  Trace elements of magnetite and iron isotopes of the Zankan iron deposit, westernmost Kunlun, China: A case study of seafloor hydrothermal iron deposits , 2017 .

[25]  G. Cox,et al.  A model for Cryogenian iron formation , 2016 .

[26]  Yunpeng Dong,et al.  Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China , 2016 .

[27]  Weiqiang Li,et al.  Biologically recycled continental iron is a major component in banded iron formations , 2015, Proceedings of the National Academy of Sciences.

[28]  Yaowu Song,et al.  Magma mixing and crust–mantle interaction in the Triassic monzogranites of Bikou Terrane, central China: Constraints from petrology, geochemistry, and zircon U–Pb–Hf isotopic systematics , 2015 .

[29]  P. Nadoll,et al.  Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States , 2015, Mineralium Deposita.

[30]  D. French,et al.  The chemistry of hydrothermal magnetite: A review , 2014 .

[31]  Xiaoqing Zhu,et al.  The Gongchangling BIFs from the Anshan–Benxi area, NE China: Petrological–geochemical characteristics and genesis of high-grade iron ores , 2014 .

[32]  Zuoheng Zhang,et al.  Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview , 2014 .

[33]  Jing Chen,et al.  Types and general characteristics of the BIF-related iron deposits in China , 2014 .

[34]  E. Bellefroid,et al.  Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance , 2013 .

[35]  D. Davis,et al.  2.1–1.85 Ga tectonic events in the Yangtze Block, South China: Petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia , 2013 .

[36]  Yan‐jing Chen,et al.  Global glaciations and atmospheric change at ca.2.3 Ga , 2013 .

[37]  Guochun Zhao,et al.  Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications , 2013 .

[38]  Tao Yang,et al.  REE geochemistry of carbonates from the Guanmenshan Formation, Liaohe Group, NE Sino-Korean Craton: Implications for seawater compositional change during the Great Oxidation Event , 2013 .

[39]  Janisar M. Sheikh,et al.  Geochemistry of pillow basalts from Bompoka, Andaman–Nicobar islands, Bay of Bengal, India , 2013 .

[40]  Shan Gao,et al.  2.6–2.7 Ga crustal growth in Yangtze craton, South China , 2013 .

[41]  Peter A. Cawood,et al.  Precambrian geology of China , 2012 .

[42]  Peter A. Cawood,et al.  Amalgamation of the North China Craton: Key issues and discussion , 2012 .

[43]  Lianchang Zhang,et al.  Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U–Pb dating , 2012 .

[44]  Zhou Hongying,et al.  Formation Ages of Early Precambrian BIFs in the North China Craton:SHRIMP Zircon U-Pb Dating , 2012 .

[45]  Shen Baofeng Geological Characters and Resource Prospect of the BIF Type Iron Ore Deposits in China , 2012 .

[46]  Lianchang Zhang,et al.  Zircon U–Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: Constraints on the ore-forming age and tectonic setting , 2011 .

[47]  Yan‐jing Chen,et al.  Paleoproterozoic positive δ13Ccarb excursion in the northeastern Sino-Korean craton: Evidence of the Lomagundi Event , 2011 .

[48]  Wang Hongliang Constraints from Zircon U-Pb Chronology of Yudongzi Group Magnetite-Quartzite in the Lueyang Area,Southern Qinling,China , 2011 .

[49]  L. Yongsheng,et al.  Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS , 2010 .

[50]  Noah J. Planavsky,et al.  Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes , 2010 .

[51]  Liang Ting Zircon LA-ICP-MS U-Pb dating and significance of Yudongzi Group deformation granite from Lueyang area,western Qinling,China , 2010 .

[52]  M. Bau,et al.  Distribution of high field strength elements (Y, Zr, REE, Hf, Ta, Th, U) in adjacent magnetite and chert bands and in reference standards FeR-3 and FeR-4 from the Temagami iron-formation, Canada, and the redox level of the Neoarchean ocean , 2009 .

[53]  Shang Gao,et al.  Zircon U–Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: refining the timing of Palaeoproterozoic high‐grade metamorphism , 2009 .

[54]  A. Gerdes,et al.  Zircon formation versus zircon alteration — New insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt , 2009 .

[55]  R. Frei,et al.  Trace element and isotopic characterization of Neoarchean and Paleoproterozoic iron formations in the Black Hills (South Dakota, USA): Assessment of chemical change during 2.9–1.9 Ga deposition bracketing the 2.4–2.2 Ga first rise of atmospheric oxygen , 2008 .

[56]  D. Günther,et al.  Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS , 2008 .

[57]  P. Andersson,et al.  Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa , 2008 .

[58]  D. Lascelles Black smokers and density currents: A uniformitarian model for the genesis of banded iron-formations , 2007 .

[59]  A. Vaughan,et al.  The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U–Pb SHRIMP and laser ablation Hf isotope study of complex zircons , 2006 .

[60]  C. Klein Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins , 2005 .

[61]  S. Wilde,et al.  Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited , 2005 .

[62]  Yong‐Fei Zheng,et al.  Genesis of zircon and its constraints on interpretation of U-Pb age , 2004 .

[63]  M. Whitehouse,et al.  Characterisation of early Archaean chemical sediments by trace element signatures , 2004 .

[64]  G. Logan,et al.  Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere , 2004 .

[65]  W. Bleeker The late Archean record: a puzzle in ca. 35 pieces , 2003 .

[66]  C. Isachsen,et al.  The decay constant of 176Lu determined from Lu-Hf and U-Pb isotope systematics of terrestrial Precambrian high-temperature mafic intrusions , 2003 .

[67]  T. Kano,et al.  Negative Ce Anomaly in the Indian Banded Iron Formations: Evidence for the Emergence of Oxygenated Deep‐Sea at 2.9‐2.7 Ga , 2002 .

[68]  Zhang Zongqing On the Age of Metamorphic Rocks of the Yudongzi Group and the Archean Crystalline Basement of the Qinling Orogen , 2001 .

[69]  W. Griffin,et al.  The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites , 2000 .

[70]  D. Abbott,et al.  Plume‐related mafic volcanism and the deposition of banded iron formation , 1999 .

[71]  P. Dulski,et al.  Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater , 1999 .

[72]  Y. Nozaki,et al.  Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation , 1999 .

[73]  R. Powell,et al.  Calculating phase diagrams involving solid solutions via non‐linear equations, with examples using THERMOCALC , 1998 .

[74]  M. Basei,et al.  SHRIMP zircon U–Pb constraints on the age of the Carajás formation, Grão ParáGroup, Amazon Craton , 1998 .

[75]  F. Albarède,et al.  “The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system”: [Earth Planet. Sci. Lett. 148 (1997) 243–258]1 , 1998 .

[76]  Chen Yanjing,et al.  Geochemical characteristics and evolution of REE in the Early Precambrian sediments : evidence from the southern margin of the North China Craton , 1997 .

[77]  T. Kano,et al.  Rare-earth element geochemistry of banded iron formations and associated amphibolite from the Sargur belts, south India , 1996 .

[78]  P. Dulski,et al.  Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa , 1996 .

[79]  A. Koschinsky,et al.  Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater , 1996 .

[80]  S. M. Naqvi,et al.  Geochemistry, depositional environment and tectonic setting of the BIF's of the Late Archaean Chitradurga Schist Belt, India , 1995 .

[81]  C. German,et al.  Dissolved rare earth elements in the Southern Ocean: Cerium oxidation and the influence of hydrography , 1995 .

[82]  J. Edmond,et al.  Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges , 1994 .

[83]  M. Bau Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium , 1991 .

[84]  C. German,et al.  Redox cycling of rare earth elements in the suboxic zone of the Black Sea , 1991 .

[85]  J. Monger,et al.  Anatomy of North America: thematic geologic portrayals of the continent , 1991 .

[86]  G. Kelling,et al.  Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic mélange, south Turkey , 1991 .

[87]  陈衍景,et al.  VARIATION OF REE PATTERNS IN EARLY PRECAMBRIAN SEDIMENTS——THEORETICAL STUDY AND EVIDENCE FROM THE SOUTHERN MARGIN OF THE NORTH CHINA CRATON , 1991 .

[88]  Scott M. McLennan,et al.  Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes , 1989 .

[89]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[90]  J. D. Wonder,et al.  Geochemistry and origin of manganese-rich rocks related to iron-formation and sulfide deposits, western Georgia , 1988 .

[91]  G. Gross Tectonic Systems and the Deposition of Iron-Formation , 1983 .

[92]  Julian A. Pearce,et al.  Tectonic setting of basic volcanic rocks determined using trace element analyses , 1973 .

[93]  B. Leake,et al.  Report. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names , 1971, Mineralogical Magazine.

[94]  J. Lovering,et al.  Metamorphic and metasomatic convergence of basic igneous rocks and lime‐magnesia sediments of the precambrian of North‐western Queensland∗ , 1959 .

[95]  H. L. James Sedimentary facies of iron-formation , 1954 .