Genome-wide association study of glioma and meta-analysis

Gliomas account for approximately 80 % of all primary malignant brain tumors and, despite improvements in clinical care over the last 20 years, remain among the most lethal tumors, underscoring the need for gaining new insights that could translate into clinical advances. Recent genome-wide association studies (GWAS) have identified seven new susceptibility regions. We conducted a new independent GWAS of glioma using 1,856 cases and 4,955 controls (from 14 cohort studies, 3 case–control studies, and 1 population-based case-only study) and found evidence of strong replication for three of the seven previously reported associations at 20q13.33 (RTEL), 5p15.33 (TERT), and 9p21.3 (CDKN2BAS), and consistent association signals for the remaining four at 7p11.2 (EGFR both loci), 8q24.21 (CCDC26) and 11q23.3 (PHLDB1). The direction and magnitude of the signal were consistent for samples from cohort and case–control studies, but the strength of the association was more pronounced for loci rs6010620 (20q,13.33; RTEL) and rs2736100 (5p15.33, TERT) in cohort studies despite the smaller number of cases in this group, likely due to relatively more higher grade tumors being captured in the cohort studies. We further examined the 85 most promising single nucleotide polymorphism (SNP) markers identified in our study in three replication sets (5,015 cases and 11,601 controls), but no new markers reached genome-wide significance. Our findings suggest that larger studies focusing on novel approaches as well as specific tumor subtypes or subgroups will be required to identify additional common susceptibility loci for glioma risk.

Melissa Bondy | Nilanjan Chatterjee | John K. Wiencke | Graham G. Giles | Nathaniel Rothman | Stephen J. Chanock | J. Michael Gaziano | Laura E. Beane Freeman | Roberta McKean-Cowdin | Anthony Swerdlow | Yuanyuan Xiao | Maria Feychting | Sanjay Shete | Preetha Rajaraman | Anders Ahlbom | Paul Decker | Wei Zheng | Mark P. Purdue | Emily White | Ulrike Peters | Meredith Yeager | Gianluca Severi | Robert B. Jenkins | Martha S. Linet | Christoffer Johansen | Daniel H. Lachance | Anne Zeleniuch-Jacquotte | Margaret Wrensch | Alicja Wolk | Ching Lau | Avima M. Ruder | Chenwei Liu | N. Rothman | S. Chanock | B. Fridley | P. Hartge | J. Buring | R. Hoover | A. Wolk | N. Chatterjee | G. Giles | G. Severi | L. Marchand | S. Shete | L. Le Marchand | M. Sanson | M. Stampfer | M. Yeager | Zhaoming Wang | J. Fraumeni | R. Houlston | D. Albanes | M. Lathrop | X. Shu | Yu-tang Gao | Y. Xiang | W. Zheng | Yuxue Gao | A. Ahlbom | C. Johansen | A. Swerdlow | U. Peters | H. Sesso | J. Gaziano | R. Henriksson | P. Rajaraman | S. Gapstur | G. Hallmans | M. Butler | E. White | V. Stevens | R. Mckean-Cowdin | D. Michaud | A. Zeleniuch‐Jacquotte | M. Wrensch | M. Bondy | J. Wiencke | C. Lau | P. Decker | R. Jenkins | Yuanyuan Xiao | T. Rice | J. Wiemels | M. Kosel | D. Lachance | J. Gaziano | U. Andersson | Sophia S. Wang | A. Ruder | B. Melin | M. Feychting | M. Linet | M. Purdue | K. Visvanathan | M. Braganza | C. Kitahara | M. Simon | J. Hoffman-Bolton | V. Enciso-Mora | Beatrice S. Melin | Zhaoming Wang | Ulrika Andersson | Mark Lathrop | Demetrius Albanes | Xiao-Ou Shu | Patricia Hartge | Richard Houlston | Yu-Tang Gao | Susan M. Gapstur | Robert N. Hoover | Kala Visvanathan | Terri Rice | Yong-Bing Xiang | Marc Sanson | Meir Stampfer | Stefan Lonn | Victor Enciso-Mora | Matthias Simon | Roger Henriksson | Goran Hallmans | Melissa Braganza | P. Inskip | Sarah J. Fleming | T. Carreón | Julie E. Buring | Howard D. Sesso | Joseph L. Wiemels | Dominique S. Michaud | Mary Ann Butler | Tania Carreon | Judith Hoffman-Bolton | Peter D. Inskip | Cari M. Kitahara | Loic Marchand | Victoria L. Stevens | Brooke Fridley | Matthew Kosel | Joseph F. Jr. Fraumeni | L. B. Freeman | P. Decker | Chenwei Liu | S. Lonn | D. Michaud | L. Freeman | S. Fleming | C. Lau

[1]  C. Muir,et al.  International Classification of Diseases for Oncology , 1990 .

[2]  Nature Genetics , 1991, Nature.

[3]  R Miike,et al.  Familial and personal medical history of cancer and nervous system conditions among adults with glioma and controls. , 1997, American journal of epidemiology.

[4]  H. Grönberg,et al.  Familial brain tumours—genetics or environment? A nationwide cohort study of cancer risk in spouses and first‐degree relatives of brain tumour patients , 2003, International journal of cancer.

[5]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[6]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[7]  P. Fearnhead,et al.  Genome-wide association study of prostate cancer identifies a second risk locus at 8q24 , 2007, Nature Genetics.

[8]  W. Willett,et al.  A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.

[9]  K. Aldape,et al.  Aggregation of Cancer in First-Degree Relatives of Patients with Glioma , 2007, Cancer Epidemiology Biomarkers & Prevention.

[10]  S. Plotkin,et al.  Genetic causes of brain tumors: neurofibromatosis, tuberous sclerosis, von Hippel-Lindau, and other syndromes. , 2007, Neurologic clinics.

[11]  D. Louis WHO classification of tumours of the central nervous system , 2007 .

[12]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[13]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: dominant markers and null alleles , 2007, Molecular ecology notes.

[14]  Stephen Chanock,et al.  Population Substructure and Control Selection in Genome-Wide Association Studies , 2008, PloS one.

[15]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[16]  Alexander R. Pico,et al.  Variants in the CDKN2B and RTEL1 regions are associated with high grade glioma susceptibility , 2009, Nature Genetics.

[17]  Ying Wang,et al.  A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. , 2009, American journal of human genetics.

[18]  Melissa Bondy,et al.  Genome-wide association study identifies five susceptibility loci for glioma , 2009, Nature Genetics.

[19]  Frank M. Sacks,et al.  IDH 1 and IDH 2 Mutations in Gliomas , 2009 .

[20]  K. Hemminki,et al.  Familial risks in nervous-system tumours: a histology-specific analysis from Sweden and Norway. , 2009, The Lancet. Oncology.

[21]  J. Uhm Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2009 .

[22]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[23]  K. Hoang-Xuan,et al.  Genetic Risk Profiles Identify Different Molecular Etiologies for Glioma , 2010, Clinical Cancer Research.

[24]  Nilanjan Chatterjee,et al.  Estimation of effect size distribution from genome-wide association studies and implications for future discoveries , 2010, Nature Genetics.

[25]  A. Auvinen,et al.  Interaction between 5 genetic variants and allergy in glioma risk. , 2010, American journal of epidemiology.

[26]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[27]  D. Brat,et al.  Cancer susceptibility variants and the risk of adult glioma in a US case–control study , 2011, Journal of Neuro-Oncology.

[28]  Melissa Bondy,et al.  Chromosome 7p11.2 (EGFR) variation influences glioma risk. , 2011, Human molecular genetics.

[29]  Kari Stefansson,et al.  A germline variant in the TP53 polyadenylation signal confers cancer susceptibility , 2011, Nature Genetics.

[30]  B. O'neill,et al.  Distinct germ line polymorphisms underlie glioma morphologic heterogeneity. , 2011, Cancer genetics.

[31]  Robert N. Anderson,et al.  Annual Report to the Nation on the Status of Cancer, 1975–2007, Featuring Tumors of the Brain and Other Nervous System , 2011, Journal of the National Cancer Institute.

[32]  Faith Davis,et al.  Associations of high-grade glioma with glioma risk alleles and histories of allergy and smoking. , 2011, American journal of epidemiology.

[33]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.