Natural energy decomposition analysis: An energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor–acceptor interactions

We present a procedure for partitioning the Hartree–Fock self‐consistent‐field (SCF) interaction energy into electrostatic, charge transfer, and deformation components. The natural bond orbital (NBO) approach of Weinhold and co‐workers is employed to construct intermediate supermolecule and fragment wave functions that satisfy the Pauli exclusion principle, thereby avoiding the principal deficiency of the popular Kitaura–Morokuma energy decomposition scheme. The function counterpoise method of Boys and Bernardi enters the procedure naturally, providing an estimate of basis set superposition error (BSSE). We find that the energy components exhibit little basis set dependence when BSSE is small. Applications are presented for several representative molecular and ion complexes: the weak hydrogen bond of the water dimer, the strong ionic interaction of the alkali metal hydrides, and the moderate donor–acceptor interactions of BH3NH3 and BH3CO. Electrostatic interaction dominates the long‐range region of the p...

[1]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[2]  L. Piela,et al.  Interpretation of the hydrogen-bond energy at the Hartree-Fock level for pairs of the hydrogen fluoride, water and ammonia molecules , 1990 .

[3]  Maciej Gutowski,et al.  Weak interactions between small systems. Models for studying the nature of intermolecular forces and challenging problems for ab initio calculations , 1988 .

[4]  D. Robert,et al.  On the determination of the intermolecular potential between a tetrahedral molecule and an atom or a linear or a tetrahedral molecule - application to CH4 molecule , 1976 .

[5]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[6]  J. Applequist,et al.  A multipole interaction theory of electric polarization of atomic and molecular assemblies , 1985 .

[7]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[8]  B. Roos,et al.  The nature of the bonding in XCO for X=Fe, Ni, and Cu , 1986 .

[9]  Keiji Morokuma,et al.  Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O , 1971 .

[10]  J. Carpenter,et al.  Some remarks on nonorthogonal orbitals in quantum chemistry , 1988 .

[11]  William H. Fink,et al.  Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer , 1987 .

[12]  Patrick W. Fowler,et al.  Theoretical studies of van der Waals molecules and intermolecular forces , 1988 .

[13]  I. Røeggen An analysis of hydrogen-bonded systems: (HF)2, (H2O)2 and H2O … HF , 1990 .

[14]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[15]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[16]  Ernest R. Davidson,et al.  Energy partitioning of the self‐consistent field interaction energy of ScCO , 1989 .

[17]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[18]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[19]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[20]  A. Wachters,et al.  Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .

[21]  Hideaki Umeyama,et al.  The origin of hydrogen bonding. An energy decomposition study , 1977 .

[22]  C. E. Dykstra Intermolecular electrical interaction: a key ingredient in hydrogen bonding , 1988 .

[23]  F. Weinhold,et al.  Natural population analysis , 1985 .

[24]  Steve Scheiner,et al.  Comparison of Morokuma and perturbation theory approaches to decomposition of interaction energy. (NH4)+…NH3 , 1990 .

[25]  Keiji Morokuma,et al.  Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity , 1977 .

[26]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[27]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[28]  W. Reiher,et al.  Comments on ‘‘Do electrostatic interactions predict structures of van der Waals molecules?’’ , 1983 .

[29]  Cornelis Altona,et al.  Calculation and properties of non-orthogonal, strictly local molecular orbitals , 1985 .

[30]  David Feller,et al.  The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water , 1993 .