An Information Theory Approach to Nonlinear, Nonequilibrium Thermodynamics

Using the problem of ion channel thermodynamics as an example, we illustrate the idea of building up complex thermodynamic models by successively adding physical information. We present a new formulation of information algebra that generalizes methods of both information theory and statistical mechanics. From this foundation we derive a theory for ion channel kinetics, identifying a nonequilibrium ‘process’ free energy functional in addition to the well-known integrated work functionals. The Gibbs-Maxwell relation for the free energy functional is a Green-Kubo relation, applicable arbitrarily far from equilibrium, that captures the effect of non-local and time-dependent behavior from transient thermal and mechanical driving forces. Comparing the physical significance of the Lagrange multipliers to the canonical ensemble suggests definitions of nonequilibrium ensembles at constant capacitance or inductance in addition to constant resistance. Our result is that statistical mechanical descriptions derived from a few primitive algebraic operations on information can be used to create experimentally-relevant and computable models. By construction, these models may use information from more detailed atomistic simulations. Two surprising consequences to be explored in further work are that (in)distinguishability factors are automatically predicted from the problem formulation and that a direct analogue of the second law for thermodynamic entropy production is found by considering information loss in stochastic processes. The information loss identifies a novel contribution from the instantaneous information entropy that ensures non-negative loss.

[1]  D. Hestenes Entropy and Indistinguishability , 1970 .

[2]  D. Zubarev Modern methods of the statistical theory of nonequilibrium processes , 1981 .

[3]  D. Rogers,et al.  Irreversible Thermodynamics , 2011, 1105.5619.

[4]  R J French,et al.  Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps. , 1990, Biophysical journal.

[5]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[6]  Á. R. Vasconcellos,et al.  Predictive Statistical Mechanics: A Nonequilibrium Ensemble Formalism , 2002 .

[7]  Larry S. Liebovitch,et al.  Ion channel kinetics: a model based on fractal scaling rather than multistate Markov processes , 1987 .

[8]  C. Jarzynski Rare events and the convergence of exponentially averaged work values. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  D. Bedeaux,et al.  Non-equilibrium Thermodynamics of Heterogeneous Systems , 2008, Series on Advances in Statistical Mechanics.

[10]  E. Jaynes Probability theory : the logic of science , 2003 .

[11]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[12]  On the explanation for quantum statistics , 2005, quant-ph/0511136.

[13]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[14]  R. Lindsay,et al.  The Conceptual Foundations of the Statistical Approach in Mechanics , 1959 .

[15]  Michael C. Mackey,et al.  The dynamic origin of increasing entropy , 1989 .

[16]  Eduardo Perozo,et al.  Structural mechanism of C-type inactivation in K+ channels , 2010, Nature.

[17]  J. Neyton,et al.  Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+ -activated K+ channel , 1988, The Journal of general physiology.

[18]  Kristian G. Olesen,et al.  An algebra of bayesian belief universes for knowledge-based systems , 1990, Networks.

[19]  J. Gibbs Elementary Principles in Statistical Mechanics , 1902 .

[20]  G. Lebon,et al.  Extended irreversible thermodynamics , 1993 .

[21]  B. Hille Ionic channels of excitable membranes , 2001 .

[22]  Prakash P. Shenoy,et al.  Axioms for probability and belief-function proagation , 1990, UAI.

[23]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[24]  R. Balescu,et al.  Non-equilibrium Thermodynamics , 1961 .

[25]  G. Crooks Path-ensemble averages in systems driven far from equilibrium , 1999, cond-mat/9908420.

[26]  L. Chua Memristor-The missing circuit element , 1971 .

[27]  R. Niven Steady state of a dissipative flow-controlled system and the maximum entropy production principle. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  R. T. Cox The Algebra of Probable Inference , 1962 .

[29]  J. Neyton,et al.  Potassium blocks barium permeation through a calcium-activated potassium channel , 1988, The Journal of general physiology.

[30]  David D. L. Minh,et al.  Optimal estimators and asymptotic variances for nonequilibrium path-ensemble averages. , 2009, The Journal of chemical physics.

[31]  E. T. Jaynes,et al.  Papers on probability, statistics and statistical physics , 1983 .

[32]  B. Ripley,et al.  E. T. Jaynes: Papers on Probability, Statistics and Statistical Physics , 1983 .

[33]  L. Pratt,et al.  The Potential Distribution Theorem and Models of Molecular Solutions , 2006 .

[34]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[35]  C. Maes,et al.  Computation of Current Cumulants for Small Nonequilibrium Systems , 2008, 0807.0145.

[36]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[37]  M. Scully,et al.  Frontiers of nonequilibrium statistical physics , 1986 .

[38]  D. Zuckerman,et al.  Single-ensemble nonequilibrium path-sampling estimates of free energy differences. , 2004, The Journal of chemical physics.

[39]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[41]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[42]  David A. Kofke,et al.  Accuracy of free-energy perturbation calculations in molecular simulation. I. Modeling , 2001 .

[43]  J. Parrondo,et al.  Dissipation: the phase-space perspective. , 2007, Physical review letters.

[44]  C Jarzynski,et al.  Experimental test of Hatano and Sasa's nonequilibrium steady-state equality. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[46]  Stationary Nonequilibrium Gibbsian Ensembles , 1959 .

[47]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[48]  G. Pólya Mathematics and Plausible Reasoning , 1958 .

[49]  V. Luzhkov,et al.  Ion permeation mechanism of the potassium channel , 2000, Nature.

[50]  Peter G. Bergmann,et al.  New Approach to Nonequilibrium Processes , 1955 .

[51]  David Jou,et al.  Extended irreversible thermodynamics revisited (1988-98) , 1999 .

[52]  T. Woolf,et al.  DYNAMIC REACTION PATHS AND RATES THROUGH IMPORTANCE-SAMPLED STOCHASTIC DYNAMICS , 1999 .

[53]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[54]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[55]  D. Rogers,et al.  Modeling molecular and ionic absolute solvation free energies with quasichemical theory bounds. , 2008, The Journal of chemical physics.

[56]  O. Penrose Foundations of statistical mechanics , 1969 .

[57]  A. A. Filyukov,et al.  Method of the most probable path of evolution in the theory of stationary irreversible processes , 1967 .

[58]  R. Callen,et al.  Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .

[59]  Christophe Chipot,et al.  Comprar Free Energy Calculations · Theory and Applications in Chemistry and Biology | Chipot, Christophe | 9783540736172 | Springer , 2007 .

[60]  D. Zuckerman,et al.  Erratum: “Single-ensemble nonequilibrium path-sampling estimates of free energy differences” [J. Chem. Phys. 120, 10876 (2004)] , 2004 .

[61]  E. Jaynes The Gibbs Paradox , 1992 .

[62]  W. T. Grandy,et al.  Foundations of Statistical Mechanics , 1987 .

[63]  D. Rogers,et al.  Probing the thermodynamics of competitive ion binding using minimum energy structures. , 2010, The journal of physical chemistry. B.

[64]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[65]  R. MacKinnon,et al.  Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution , 2001, Nature.

[66]  John Skilling,et al.  Maximum Entropy and Bayesian Methods , 1989 .

[67]  E. T. Jaynes,et al.  Predictive Statistical Mechanics , 1986 .

[68]  Christophe Chipot,et al.  Free Energy Calculations , 2008 .

[69]  E. T. Jaynes,et al.  The Evolution of Carnot’s Principle , 1988 .

[70]  Predictive Statistical Mechanics , 2002 .