Analytical solutions and moment analysis of general rate model for linear liquid chromatography

Abstract The general rate model (GRM) is considered to be a comprehensive and reliable mathematical model for describing the separation and mass transfer processes of solutes in chromatographic columns. However, the numerical solution of model equations is complicated and time consuming. This paper presents analytical solutions of the GRM for linear adsorption isotherms and different sets of boundary conditions at the column inlet and outlet. The analytical solutions are obtained by means of the Laplace transformation. Numerical Laplace inversion is used to transform back the solution in the time domain because analytical inversion cannot be obtained. The first four temporal moments are derived analytically using the Laplace domain solutions. The moments of GRM are utilized to analyze the retention times, band broadenings, front asymmetries and kurtosis of the elution profiles. Relationships are derived among the kinetic parameters to match the first four moments of GRM and the simpler lumped kinetic model (LKM). For validation, the analytical solutions are compared with numerical solutions of a second order finite volume scheme. Good agreements in the results verify the correctness of analytical solutions and the accuracy of the numerical scheme.

[1]  D. Gelbin,et al.  Heat and mass transfer in packed beds—IV: Use of weighted moments to determine axial dispersion coefficients , 1979 .

[2]  K. Miyabe Surface diffusion in reversed-phase liquid chromatography using silica gel stationary phases of different C1 and C18 ligand densities. , 2007, Journal of chromatography. A.

[3]  Andreas Seidel-Morgenstern,et al.  Analysis of boundary conditions in the axial dispersion model by application of numerical Laplace inversion , 1991 .

[4]  Miroslav Kubín,et al.  Beitrag zur theorie der chromatographie II. Einfluss der diffusion ausserhalb und der adsorption innerhalb des sorbens-korns , 1965 .

[5]  Miroslav Kubín,et al.  Beitrag zur Theorie der Chromatographie , 1965 .

[6]  Soon Huat Tan,et al.  Cytocompatibility and Mechanical Properties of Hydroxyapatite Composite Reinforced with Multi-Walled Carbon Nanotubes and Bovine Serum Albumin , 2013 .

[7]  Martinus Th. Van Genuchten,et al.  Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay , 1981 .

[8]  Concentration dependence of lumped mass transfer coefficients linear versus non-linear chromatography and isocratic versus gradient operation. , 2003, Journal of chromatography. A.

[9]  Douglas M. Ruthven,et al.  Principles of Adsorption and Adsorption Processes , 1984 .

[10]  Andreas Seidel-Morgenstern,et al.  A discontinuous Galerkin method to solve chromatographic models. , 2011, Journal of chromatography. A.

[11]  G. Carta Exact analytic solution of a mathematical model for chromatographic operations , 1988 .

[12]  E. Kucera,et al.  Contribution to the theory of chromatography: linear non-equilibrium elution chromatography. , 1965, Journal of chromatography.

[13]  Andreas Seidel-Morgenstern,et al.  Analytical solutions and moment analysis of chromatographic models for rectangular pulse injections. , 2013, Journal of chromatography. A.

[14]  D. Do,et al.  Applied Mathematics and Modeling for Chemical Engineers , 1994 .

[15]  A. Cavazzini,et al.  Equivalence of the microscopic and macroscopic models of chromatography: stochastic-dispersive versus lumped kinetic model. , 2004, Journal of chromatography. A.

[16]  G. Guiochon,et al.  Preparative liquid chromatography , 1987, Journal of chromatography. A.

[17]  J. Smith,et al.  Adsorption rate constants from chromatography , 1968 .

[18]  P. V. Danckwerts Continuous flow systems , 1953 .

[19]  D. Gelbin,et al.  Weighted moments and the pore-diffusion model , 1980 .

[20]  Anita M. Katti,et al.  Fundamentals of Preparative and Nonlinear Chromatography , 1994 .

[21]  Shamsul Qamar,et al.  Efficient and accurate numerical simulation of nonlinear chromatographic processes , 2011, Comput. Chem. Eng..

[22]  Georges Guiochon,et al.  Measurement of the parameters of the mass transfer kinetics in high performance liquid chromatography , 2003 .

[23]  L. T. DeCarlo On the meaning and use of kurtosis. , 1997 .

[24]  Motoyuki Suzuki NOTES ON DETERMINING THE MOMENTS OF THE IMPULSE RESPONSE FROM THE BASIC TRANSFORMED EQUATIONS , 1974 .

[25]  J. Smith,et al.  Kinetic studies by chromatography , 1971 .

[26]  K. Miyabe,et al.  Moment analysis of chromatographic behavior in reversed-phase liquid chromatography. , 2009, Journal of separation science.

[27]  Andreas Seidel-Morgenstern,et al.  Analysis and numerical investigation of two dynamic models for liquid chromatography , 2013 .

[28]  A. Lenhoff Significance and estimation of chromatographic parameters , 1987 .

[29]  G. Guiochon,et al.  Influence of the modification conditions of alkyl bonded ligands on the characteristics of reversed-phase liquid chromatography. , 2000, Journal of chromatography. A.