Design space exploration and performance modelling of advanced turbofan and open-rotor engines

This work focuses on the current civil engine design practice of increasing overall pressure ratio, turbine entry temperature and bypass ratio, and on the technologies required in order to sustain it. In this context, this thesis contributes towards clarifying the following gray aspects of future civil engine development: • the connection between an aircraft application, the engine thermodynamic cycle and the advanced technologies of variable area fan nozzle and fan drive gearbox. • the connection between the engine thermodynamic cycle and the fuel consumption penalties of extracting bleed or power in order to satisfy the aircraft needs. • the scaling of propeller maps in order to enable extensive open-rotor studies similar to the ones carried out for turbofan engines. The first two objectives are tackled by implementing a preliminary design framework, which comprises models that calculate the engine uninstalled performance, dimensions, weight, drag and installed performance. The framework produces designs that are in good agreement with current and near future civil engines. The need for a variable area fan nozzle is related to the fan surge margin at take-off, while the transition to a geared architecture is identified by tracking the variation of the low pressure turbine number of stages. The results show that the above enabling technologies will be prioritised for long range engines, due to their higher overall pressure ratio, higher bypass ratio and lower specific thrust. The analysis also shows that future lower specific thrust engines will suffer from higher secondary power extraction penalties. A propeller modelling and optimisation method is created in order to accomplish the open-rotor aspect of this work. The propeller model follows the lifting-line approach and is found to perform well against experimental data available for the SR3 prop-fan. The model is used in order to predict the performance of propellers with the same distribution of airfoils and sweep, but with different design point power coefficient and advance ratio. The results demonstrate that all the investigated propellers can be modelled by a common map, which separately determines the ideal and viscous losses.

[1]  G.J.D. Zondervan,et al.  A review of propeller modelling techniques based on Euler methods , 1998 .

[2]  R I Jones Considerations of the All Electric (Accessory) Engine Concept , 1995 .

[3]  L. J. Bober,et al.  Summary of recent NASA propeller research , 1984 .

[4]  Paul Fletcher,et al.  Gas Turbine Performance , 1998 .

[5]  R. E. Davidson Optimization and performance calculation of dual-rotation propellers , 1981 .

[6]  Maido Saarlas,et al.  An introduction to aerospace propulsion , 1996 .

[7]  Albert C. Leiper,et al.  The Free Wake Analysis , 1970 .

[8]  Cesare A. Hall,et al.  Assessment of Future Aircraft Technologies on Engine Noise and Fuel Consumption , 2007 .

[9]  D. Snyder,et al.  Modern Adaptation of Prandtl's Classic Lifting-Line Theory , 2000 .

[10]  J. C. Evvard,et al.  Distribution of wave drag and lift in the vicinity of wing tips at supersonic speeds , 1947 .

[11]  Bill Gunston,et al.  Jane's-Aero Engines , 1996 .

[12]  R. Harvey,et al.  Optimization studies for the PW305 turbofan , 1990 .

[13]  T. Alan Egolf,et al.  An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 2: User's manual , 1988 .

[14]  T. A. Wynosky,et al.  Prop-Fan Performance Terminology , 1987 .

[15]  Henry V. Borst,et al.  Summary of Propeller Design Procedures and Data. Volume 3. Hub, Actuator, and Control Designs , 1973 .

[16]  Bruce Mckay,et al.  Ideal optimization of counterrotating propellers , 1988 .

[17]  L Prandtl Applications of Modern Hydrodynamics to Aeronautics. [in Two Parts , .

[18]  G L Wilde FUTURE LARGE CIVIL TURBOFANS AND POWERPLANTS , 1978 .

[19]  R I Jones,et al.  The more electric aircraft—assessing the benefits , 2002 .

[20]  Joachim Kurzke Gas Turbine Cycle Design Methodology: A Comparison of Parameter Variation With Numerical Optimization , 1998 .

[21]  R. Worobel,et al.  Advanced general aviation propeller study , 1971 .

[22]  C. Rohrbach,et al.  Aeroacoustic design of the Prop Fan , 1979 .

[23]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[24]  M. Tremmel,et al.  Numerical Determination of Circulation for a Swept Propeller , 2001 .

[25]  V. E. Kyritsis Thermodynamic preliminary design of civil turbofans and variable geometry implementation , 2006 .

[26]  J. B. Young,et al.  Gas Properties as a Limit to Gas Turbine Performance , 2002 .

[27]  R. J. Frye,et al.  Advanced secondary power system for transport aircraft , 1985 .

[28]  Matthew W. Whellens Multidisciplinary optimisation of aero-engines using genetic algorithms and preliminary design tools , 2003 .

[29]  M. A. Takallu,et al.  A hybrid method for prediction of propeller performance , 1990 .

[30]  Lloyd R. Jenkinson,et al.  Civil jet aircraft design , 1999 .

[31]  Leishman,et al.  The Role of Filament Stretching in the Free-Vortex Modeling of Rotor Wakes , 2002 .

[32]  G. B. Toyne,et al.  'All-Electric' Accessory Drive Systems: Implications on Engine Design and Performance, , 1983 .

[33]  Ohad Gur,et al.  Optimization of Propeller Based Propulsion System , 2009 .

[34]  P. Gardarein,et al.  Recent improvements in propeller aerodynamic computations , 2000 .

[35]  Michael T. Tong,et al.  Initial Assessment of Open Rotor Propulsion Applied to an Advanced Single-Aisle Aircraft , 2011 .

[36]  Mitsuo Gen,et al.  Genetic algorithms and engineering optimization , 1999 .

[37]  John P. Sullivan,et al.  Optimization of Propeller Blade Twist by an Analytical Method , 1984 .

[38]  W. Durand,et al.  Aerodynamic theory : a general review of progress , 1963 .

[39]  Henry V. Borst Summary of Propeller Design Procedures and Data. Volume 1. Aerodynamic Design and Installation , 1973 .

[40]  J. M. Rogero A genetic algorithms based optimisation tool for the preliminary design of gas turbine combustors , 2002 .

[41]  Panagiotis Laskaridis,et al.  Effects of Off-takes for Aircraft Secondary-Power Systems on Jet Engine Efficiency , 2011 .

[42]  F. B. Green,et al.  Integrated digital/electric aircraft concepts study , 1985 .

[43]  S. Drzewiecki Théorie générale de l'hélice : hélices aériennes et hélices marines , 1920 .

[44]  A Guha Effects of internal combustion and non-perfect gas properties on the optimum performance of gas turbines , 2003 .

[45]  A. Betz Schraubenpropeller mit geringstem Energieverlust. Mit einem Zusatz von l. Prandtl , 1919 .

[46]  Thomas Ensign Sensitivity Studies of Electric Systems on Business Jet Range , 2008 .

[47]  A. J. B. Jackson Some Future Trends in Aero Engine Design for Subsonic Transport Aircraft , 1976 .

[48]  Y. Sandak,et al.  Aeroelastically adaptive propeller using blades’ root flexibility , 2004, The Aeronautical Journal (1968).

[49]  L. J. Bober,et al.  Prediction of high speed propeller flow fields using a three-dimensional Euler analysis , 1983 .

[50]  Peter Jeschke,et al.  Preliminary Gas Turbine Design Using the Multidisciplinary Design System MOPEDS , 2004 .

[51]  조진수,et al.  효율향상을 위한 프로펠러 형상의 최적 설계 ( Propeller Blade Shape Optimization for Efficiency Improvement ) , 1995 .

[52]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[53]  Quentin R. Wald The aerodynamics of propellers , 2006 .

[54]  R. Owens,et al.  Ultra high bypass turbofan technologies for the twenty-first century , 1990 .

[55]  W. Stepniewski,et al.  Rotary Wing Aerodynamics , 2022 .

[56]  P. H. Young The future shape of medium and long-range civil engines , 1979 .

[57]  Abhijit Guha,et al.  Optimum fan pressure ratio for bypass engines with separate or mixed exhaust streams , 2001 .

[58]  J.-M. Jacquet,et al.  Methodology for commercial engine/aircraft optimization , 1993 .

[59]  Michael T. Tong,et al.  Conceptual Design Study of an Advanced Technology Open-Rotor Propulsion System , 2011 .

[60]  Jeffrey Scott Schutte Simultaneous multi-design point approach to gas turbine on-design cycle analysis for aircraft engines , 2009 .

[61]  D. M. Black,et al.  Evaluation of wind tunnel performance testings of an advanced 45 deg swept 8-bladed propeller at Mach numbers from 0.45 to 0.85 , 1982 .

[62]  N. T. Birch 2020 vision : the prospects for large civil aircraft propulsion , 2000 .

[63]  Tomas Grönstedt Advanced Solvers for General High Performance Transient Gas Turbine Simulation Tools , 1999 .

[64]  Robert J. Jeracki,et al.  Wind tunnel performance of four energy efficient propellers designed for Mach 0.8 cruise. [Lewis 8x6 foot wind tunnel studies for noise reduction in high speed turboprop aircraft] , 1979 .

[65]  R. E. Davidson Linearized potential theory of propeller induction in a compressible flow , 1953 .

[66]  Ouverte Oatao Integration of CFD Tools in Aerodynamic Design of Contra-Rotating Propeller Blades , 2011 .

[67]  Arne Seitz,et al.  Advanced Methods for Propulsion System Integration in Aircraft Conceptual Design , 2012 .

[68]  Panagiotis Laskaridis Performance investigations and systems architectures for the More Electric Aircraft , 2004 .

[69]  H. R. Velkoff,et al.  FREE-WAKE ANALYSIS OF A ROTOR IN HOVER , 1987 .

[70]  David L. Daggett,et al.  Ultra-efficient Engine Diameter Study , 2003 .

[71]  H. Wainauski,et al.  A report on High Speed Wind Tunnel Testing of the Large Scale Advanced Prop-Fan , 1988 .

[72]  Ohad Gur,et al.  Propeller Performance at Low Advance Ratio , 2005 .

[73]  Pericles Pilidis,et al.  Effects of engine parameters on secondary power extraction and evaluation of engine performance penalties , 2009 .

[74]  J. P. Sullivan,et al.  The effect of blade sweep on propeller performance , 1977 .

[75]  R. M. Plencner,et al.  Propeller performance and weight predictions appended to the Navy/NASA engine program , 1983 .

[76]  Suresh Sampath Fault diagnostics for advanced cycle marine gas turbine using genetic algorithm , 2003 .

[77]  Roy D. Hager,et al.  Advanced Turboprop Project , 1988 .

[78]  Cesar Celis Evaluation and optimisation of environmentally friendly aircraft propulsion systems , 2010 .

[79]  J. Bousquet Theoretical and experimental analysis of highspeed propeller aerodynamics , 1986 .

[80]  L. J. Bober Advanced propeller aerodynamic analysis , 1980 .

[81]  D. Schmitt,et al.  Emission comparison of turbofan and open rotor engines under special consideration of aircraft and mission design aspects , 2011 .

[82]  Ronald Slingerland,et al.  Bleed Air versus Electric Power Off-takes from a Turbofan Gas Turbine over the Flight Cycle , 2007 .

[83]  J. L. Colehour,et al.  Investigation of very high bypass ratio engines for subsonic transports , 1990 .

[84]  Gordon C. Oates Aerothermodynamics of Gas Turbine and Rocket Propulsion , 1997 .

[85]  Ankush Gulati An optimization tool for gas turbine engine diagnostics , 2001 .

[86]  N. J. Peacock,et al.  Advanced propulsion systems for large subsonic transports , 1989 .

[87]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[88]  D. M. Black,et al.  Aerodynamic design and performance testing of an advanced 30 deg swept, eight bladed propeller at Mach numbers from 0.2 to 0.85 , 1978 .

[89]  Joachim Kurzke,et al.  Fundamental Differences Between Conventional and Geared Turbofans , 2009 .

[90]  S. Goldstein On the Vortex Theory of Screw Propellers , 1929 .

[91]  Ohad Gur,et al.  Novel Approach to Axisymmetric Actuator Disk Modeling , 2008 .

[92]  L. J. Bober,et al.  Summary of advanced methods for predicting high speed propeller performance , 1980 .

[93]  C. J. Mccolgan,et al.  Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 4: Computer user's manual for UAAP turboprop aeroacoustic code , 1991 .

[94]  Christoph Burger Propeller performance analysis and multidisciplinary optimization using a genetic algorithm , 2007 .

[95]  George L. Stefko,et al.  New Test Techniques and Analytical Procedures for Understanding the Behavior of Advanced Propellers , 1983 .

[96]  Anthony J. B. Jackson,et al.  Optimisation of aero and industrial gas turbine design for the environment , 2009 .

[97]  Dimitri N. Mavris,et al.  Effects of Advanced Engine Technology on Open Rotor Cycle Selection and Performance , 2013 .

[98]  Henry Cohen,et al.  Gas turbine theory , 1973 .

[99]  C. Adkins,et al.  Design of optimum propellers , 1983 .

[100]  Theodore von Karman,et al.  Supersonic Aerodynamics-Principles and Applications The Tenth Wright Brothers Lecture , 1947 .

[101]  Pericles Pilidis,et al.  Performance Evaluation for the Application of Variable Turbine-Cooling-Bleeds in Civil Turbofans , 2007 .

[102]  Ricardo Gandolfi,et al.  More Electric Aircraft Analysis Using Exergy as a Design Comparison Tool , 2010 .

[103]  J. M. Bousquet Etude de l'aérodynamique des hélices pour avions rapides , 1987 .

[104]  L. Erickson Panel methods: An introduction , 1990 .

[105]  Robert J. Jeracki,et al.  Low and high speed propellers for general aviation: Performance potential and recent wind tunnel test results , 1981 .

[106]  Abhijit Guha Optimisation of aero gas turbine engines , 2001 .

[107]  L. K. Chang,et al.  Factors influencing the predicted performance of advanced propeller designs , 1981 .

[108]  J. Borradaile,et al.  Towards the optimum ducted UHBR engine , 1988 .

[109]  H W Bennett Aero Engine Development for the Future , 1983 .

[110]  Krishnamurty Karamcheti,et al.  Principles of ideal-fluid aerodynamics , 1966 .

[111]  L. Morino Computational Methods in Potential Aerodynamics , 1986 .

[112]  Michael T. Tong An Assessment of the Impact of Emerging High-Temperature Materials on Engine Cycle Performance , 2010 .

[113]  George L. Stefko,et al.  Wind-Tunnel Results of Advanced High-Speed Propellers at Takeoff, Climb, and Landing Mach Numbers , 1985 .

[114]  Eric S. Hendricks Development of an Open Rotor Cycle Model in NPSS Using a Multi-Design Point Approach , 2011 .

[115]  H. R. Lawrence,et al.  Aerodynamic components of aircraft at high speeds , 1957 .

[116]  Pericles Pilidis,et al.  Principles of Thermodynamic Preliminary Design of Civil Turbofan Engines , 2009 .

[117]  B. J. Blaha,et al.  Design and performance of energy efficient propellers for Mach 0.8 cruise , 1977 .

[118]  C. Rohrbach,et al.  A report on the aerodynamic design and wind tunnel test of a Prop-Fan model , 1976 .

[119]  S. A. Watson,et al.  A computer program for estimating the aerodynamic characteristics of NACA 16-series airfoils , 1983 .

[120]  Pericles Pilidis,et al.  Genetic Algorithm Based Optimisation of Intercooled Recuperated Turbofan Design , 2003 .

[121]  Donald B. Hanson,et al.  Compressible Helicoidal Surface Theory for Propeller Aerodynamics and Noise , 1983 .

[122]  D. Hanson Compressible lifting surface theory for propeller performance calculation , 1982 .

[123]  William H. Press,et al.  In: Numerical Recipes in Fortran 90 , 1996 .

[124]  A. R. Bailey,et al.  Systems Study for an Integrated Digital/Electric Aircraft (IDEA). , 1985 .

[125]  O. Gur,et al.  Comparison between blade-element models of propellers , 2008, The Aeronautical Journal (1968).