A new set of H(curl)-conforming hierarchical basis functions for tetrahedral meshes
暂无分享,去创建一个
[1] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[2] Jian-Ming Jin,et al. The Finite Element Method in Electromagnetics , 1993 .
[3] J. P. Webb. Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements , 1999 .
[4] Pär Ingelström. Higher Order Finite Elements and Adaptivity in Computational Electromagnetics , 2004 .
[5] Mark Ainsworth,et al. Hierarchic finite element bases on unstructured tetrahedral meshes , 2003 .
[6] Jin-Fa Lee,et al. p-Type multiplicative Schwarz (pMUS) method with vector finite elements for modeling three-dimensional waveguide discontinuities , 2004 .
[7] Jin-Fa Lee,et al. Systematic method for finding a hierarchical vector finite element of any order using the Nedelec criteria and a Webb basis , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).
[8] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[9] A. Cangellaris,et al. Hierarchical multilevel potential preconditioner for fast finite-element analysis of microwave devices , 2002 .
[10] Ralf Hiptmair,et al. Canonical construction of finite elements , 1999, Math. Comput..
[11] A. Bondeson,et al. Goal-oriented error estimation and h-adaptivity for Maxwell's equations , 2003 .
[12] Nigel P. Weatherill,et al. The development of an hp -adaptive finite element procedure for electromagnetic scattering problems , 2003 .
[13] Serge Nicaise,et al. Edge Elements on Anisotropic Meshes and Approximation of the Maxwell Equations , 2001, SIAM J. Numer. Anal..
[14] A. Bondeson,et al. Goal-oriented error-estimation for S-parameter computations , 2004, IEEE Transactions on Magnetics.
[15] Leszek Demkowicz,et al. An hp‐adaptive finite element method for electromagnetics—part II: A 3D implementation , 2002 .
[16] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[17] Roberto D. Graglia,et al. Higher order interpolatory vector bases for computational electromagnetics," Special Issue on "Advanced Numerical Techniques in Electromagnetics , 1997 .
[18] Din-Kow Sun,et al. Construction of Nearly Orthogonal Nedelec Bases for Rapid Convergence with Multilevel Preconditioned Solvers , 2001, SIAM J. Sci. Comput..
[19] A. Bossavit. Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .
[20] N. Ida,et al. High Order Differential Form-Based Elements for the Computation of Electromagnetic Field Z. Ren, Senior Member, IEEE,and N. Ida, Senior Member, IEEE , 2000 .
[21] Accurate extrapolation to zero cell size by Padé approximation , 2003 .
[22] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[23] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[24] J.P. Webb,et al. P-adaptive computation of the scattering parameters of 3-D microwave devices , 2004, IEEE Transactions on Magnetics.