A new set of H(curl)-conforming hierarchical basis functions for tetrahedral meshes

A new set of H(curl)-conforming hierarchical basis functions for tetrahedral meshes is presented. Contrary to previous bases, this one is designed such that higher order basis functions vanish when they are projected onto a lower order finite-element space using the interpolation operator defined by Nedelec. Consequently, to increase the polynomial order and improve the accuracy of the interpolated field, only additional degrees of freedom (DOFs) of higher order are added, whereas the original DOFs (the coefficients for the basis functions) remain unchanged. This makes this basis very well suited for use with efficient multilevel solvers and goal-oriented hierarchical error estimators, which is demonstrated through numerical examples

[1]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[2]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[3]  J. P. Webb Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements , 1999 .

[4]  Pär Ingelström Higher Order Finite Elements and Adaptivity in Computational Electromagnetics , 2004 .

[5]  Mark Ainsworth,et al.  Hierarchic finite element bases on unstructured tetrahedral meshes , 2003 .

[6]  Jin-Fa Lee,et al.  p-Type multiplicative Schwarz (pMUS) method with vector finite elements for modeling three-dimensional waveguide discontinuities , 2004 .

[7]  Jin-Fa Lee,et al.  Systematic method for finding a hierarchical vector finite element of any order using the Nedelec criteria and a Webb basis , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[8]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[9]  A. Cangellaris,et al.  Hierarchical multilevel potential preconditioner for fast finite-element analysis of microwave devices , 2002 .

[10]  Ralf Hiptmair,et al.  Canonical construction of finite elements , 1999, Math. Comput..

[11]  A. Bondeson,et al.  Goal-oriented error estimation and h-adaptivity for Maxwell's equations , 2003 .

[12]  Nigel P. Weatherill,et al.  The development of an hp -adaptive finite element procedure for electromagnetic scattering problems , 2003 .

[13]  Serge Nicaise,et al.  Edge Elements on Anisotropic Meshes and Approximation of the Maxwell Equations , 2001, SIAM J. Numer. Anal..

[14]  A. Bondeson,et al.  Goal-oriented error-estimation for S-parameter computations , 2004, IEEE Transactions on Magnetics.

[15]  Leszek Demkowicz,et al.  An hp‐adaptive finite element method for electromagnetics—part II: A 3D implementation , 2002 .

[16]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[17]  Roberto D. Graglia,et al.  Higher order interpolatory vector bases for computational electromagnetics," Special Issue on "Advanced Numerical Techniques in Electromagnetics , 1997 .

[18]  Din-Kow Sun,et al.  Construction of Nearly Orthogonal Nedelec Bases for Rapid Convergence with Multilevel Preconditioned Solvers , 2001, SIAM J. Sci. Comput..

[19]  A. Bossavit Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .

[20]  N. Ida,et al.  High Order Differential Form-Based Elements for the Computation of Electromagnetic Field Z. Ren, Senior Member, IEEE,and N. Ida, Senior Member, IEEE , 2000 .

[21]  Accurate extrapolation to zero cell size by Padé approximation , 2003 .

[22]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[23]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[24]  J.P. Webb,et al.  P-adaptive computation of the scattering parameters of 3-D microwave devices , 2004, IEEE Transactions on Magnetics.