NMR investigation of RNA structure

[1]  A. Bax,et al.  Measurement of proton phosphorus 31 nmr coupling constants in double stranded dna fragments , 1987 .

[2]  H. Heus,et al.  Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. , 1991, Science.

[3]  H. Schwalbe,et al.  Determination of a complete set of coupling constants in 13C-labeled oligonucleotides , 1994, Journal of biomolecular NMR.

[4]  K. Taira,et al.  High-resolution NMR study of a synthetic oligoribonucleotide with a tetranucleotide GAGA loop that is a substrate for the cytotoxic protein, ricin. , 1993, Nucleic acids research.

[5]  Oleg Jardetzky,et al.  A systematic comparison of three structure determination methods from NMR data: Dependence upon quality and quantity of data , 1992, Journal of biomolecular NMR.

[6]  I. Tinoco,et al.  Solution conformation of an RNA hairpin loop. , 1990, Biochemistry.

[7]  G. Varani,et al.  Novel three-dimensional 1H−13C−31P triple resonance experiments for sequential backbone correlations in nucleic acids , 1995, Journal of Biomolecular NMR.

[8]  P. J. Hore,et al.  Solvent suppression in Fourier transform nuclear magnetic resonance , 1983 .

[9]  D. Arter,et al.  Ring current shielding effects in nucleic acid double helices. , 1976, Nucleic acids research.

[10]  J. Harper,et al.  Selective isotopic enrichment of synthetic RNA: application to the HIV-1 TAR element. , 1993, Biochemistry.

[11]  T. James,et al.  Dynamic interpretation of NMR data : molecular dynamics with weighted time-averaged restraints and ensemble R-factor , 1992 .

[12]  G J Kleywegt,et al.  Where freedom is given, liberties are taken. , 1995, Structure.

[13]  Hong Wang,et al.  HCCH-TOCSY spectroscopy of 13C-labeled proteins in H2O using heteronuclear cross-polarization and pulsed-field gradients , 1995, Journal of biomolecular NMR.

[14]  K. Flaherty,et al.  Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix , 1994, Nature.

[15]  G. Varani,et al.  Solution structure of an unusually stable RNA hairpin, 5GGAC(UUCG)GUCC , 1990, Nature.

[16]  C. Altona,et al.  Conformational analysis of the deoxyribofuranose ring in DNA by means of sums of proton-proton coupling constants: a graphical method. , 1987, Journal of biomolecular structure & dynamics.

[17]  B. Sproat,et al.  AN EFFICIENT METHOD FOR THE ISOLATION AND PURIFICATION OF OLIGORIBONUCLEOTIDES , 1995 .

[18]  C. W. Hilbers,et al.  The solution structure of the hairpin formed by d(TCTCTC-TTT-GAGAGA). , 1994, Biochemistry.

[19]  Arthur G. Palmer,et al.  Sensitivity improvement in proton-detected two-dimensional heteronuclear relay spectroscopy , 1991 .

[20]  G. Wagner,et al.  Mapping of the spectral densities of N-H bond motions in eglin c using heteronuclear relaxation experiments. , 1992, Biochemistry.

[21]  D. Lilley,et al.  Solution structure of a parallel-stranded tetraplex formed by d(TG4T) in the presence of sodium ions by nuclear magnetic resonance spectroscopy. , 1994, Journal of molecular biology.

[22]  I. Tinoco,et al.  RNA pseudoknots. Stability and loop size requirements. , 1990, Journal of molecular biology.

[23]  C. Podlasek,et al.  [13C]Enriched Methyl Aldopyranosides: Structural Interpretations of 13C-1H Spin-Coupling Constants and 1H Chemical Shifts , 1995 .

[24]  D. Patel,et al.  Solution structure and hydration patterns of a pyrimidine.purine.pyrimidine DNA triplex containing a novel T.CG base-triple. , 1994, Journal of molecular biology.

[25]  M. Karplus,et al.  Influence of rapid intramolecular motion on NMR cross-relaxation rates. A molecular dynamics study of antamanide in solution , 1992 .

[26]  A. Gronenborn,et al.  Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. , 1988, Protein engineering.

[27]  S. Macura,et al.  Refinement of the NMR solution structure of a protein to remove distortions arising from neglect of internal motion. , 1991, Biochemistry.

[28]  D Genest,et al.  A Monte Carlo simulation study of the influence of internal motions on the molecular conformation deduced from two‐dimensional nmr experiments , 1989, Biopolymers.

[29]  C. Martin,et al.  Effects of solution conditions on the steady-state kinetics of initiation of transcription by T7 RNA polymerase. , 1994, Biochemistry.

[30]  I. Tinoco,et al.  Crystal structure of an RNA double helix incorporating a track of non-Watson–Crick base pairs , 1991, Nature.

[31]  J. Karn,et al.  High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region. , 1993, Journal of molecular biology.

[32]  D. Patel,et al.  Hydration sites in purine.purine.pyrimidine and pyrimidine.purine.pyrimidine DNA triplexes in aqueous solution. , 1994, Structure.

[33]  S. White,et al.  NMR analysis of the trans-activation response (TAR) RNA element of equine infectious anemia virus. , 1995, Nucleic acids research.

[34]  A. Pardi,et al.  Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. , 1992, Nucleic acids research.

[35]  G. Varani,et al.  The stereospecific assignment of H5' and H5'' in RNA using the sign of two-bond carbon-proton scalar couplings , 1993 .

[36]  P. Schmieder,et al.  Heteronuclear NMR of DNA with the heteronucleus in natural abundance: facilitated assignment and extraction of coupling constants. , 1992, Nucleic acids research.

[37]  J. Keeler,et al.  Improving solvent suppression in jump-return NOESY experiments , 1994, Journal of biomolecular NMR.

[38]  G. Montelione,et al.  Accurate measurements of long-range heteronuclear coupling constants from homonuclear 2D NMR spectra of isotope-enriched proteins , 1989 .

[39]  D. Crothers,et al.  Three-Dimensional Triple-Resonance 1H, 13C, 31P Experiment: Sequential Through-Bond Correlation of Ribose Protons and Intervening Phosphorus along the RNA Oligonucleotide Backbone , 1994 .

[40]  B. McConnell The amino 1H resonances of oligonucleotide helices: d(CGCG). , 1984, Journal of biomolecular structure & dynamics.

[41]  G. C. Levy,et al.  13C-NMR relaxation in three DNA oligonucleotide duplexes: model-free analysis of internal and overall motion. , 1994, Biochemistry.

[42]  G M Clore,et al.  Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy. , 1993, Journal of molecular biology.

[43]  T. James,et al.  How to generate accurate solution structures of double-helical nucleic acid fragments using nuclear magnetic resonance and restrained molecular dynamics. , 1995, Methods in enzymology.

[44]  D. Lilley,et al.  NMR study of parallel-stranded tetraplex formation by the hexadeoxynucleotide d(TG4T) , 1992, Nature.

[45]  C. Oubridge,et al.  Crystallisation of RNA-protein complexes. II. The application of protein engineering for crystallisation of the U1A protein-RNA complex. , 1995, Journal of molecular biology.

[46]  Horst Kessler,et al.  Scalar Coupling Constants—Their Analysis and Their Application for the Elucidation of Structures , 1995 .

[47]  L. Mueller P.E.COSY, a simple alternative to E.COSY , 1987 .

[48]  D. Shugar,et al.  Conformation of the exocyclic 5'-CH 2 OH in nucleosides and nucleotides in aqueous solution from specific assignments of the H 5' and H 5'' signals in the NMR spectra. , 1972, Biochemical and biophysical research communications.

[49]  G. Varani,et al.  Carbon-Proton Scalar Couplings in RNA: 3D Heteronuclear and 2D Isotope-Edited NMR of a 13C-Labeled Extra-stable Hairpin , 1994 .

[50]  P. Sharp,et al.  Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing , 1993, Nature.

[51]  C. Hilbers,et al.  Chemically relayed nuclear Overhauser effects: connectivities between resonances of nonexchangeable protons and water , 1988 .

[52]  J. Puglisi,et al.  Conformation of the TAR RNA-arginine complex by NMR spectroscopy. , 1992, Science.

[53]  J. Puglisi,et al.  Solution Structure of a Bovine Immunodeficiency Virus Tat-TAR Peptide-RNA Complex , 1995, Science.

[54]  I. Tinoco,et al.  Conformation of an RNA pseudoknot , 1990, Journal of Molecular Biology.

[55]  M. Guéron,et al.  Proton exchange and base-pair kinetics of poly(rA).poly(rU) and poly(rI).poly(rC). , 1985, Journal of molecular biology.

[56]  P. Moore,et al.  The sarcin/ricin loop, a modular RNA. , 1995, Journal of molecular biology.

[57]  Roger A. Jones,et al.  Nitrogen-15-labeled oligodeoxynucleotides. 3. Protonation of the adenine N1 in the A.cntdot.C and A.cntdot.G mispairs of the duplexes {d[CG(15N1)AGAATTCCCG]}2 and {d[CGGGAATTC(15N1)ACG]}2 , 1991 .

[58]  J. Williamson,et al.  Assignment and modeling of the Rev Response Element RNA bound to a Rev peptide using 13C-heteronuclear NMR , 1995, Journal of biomolecular NMR.

[59]  M. Kainosho,et al.  An Alternative Triple-Resonance Method for the Through-Bond Correlation of Intranucleotide H1' and H8 NMR Signals of Purine Nucleotides. Application to a DNA Dodecamer with Fully 13C/15N-Labeled Deoxyadenosine Residues , 1994 .

[60]  R. Levy,et al.  Determining local conformational variations in DNA. Nuclear magnetic resonance structures of the DNA duplexes d(CGCCTAATCG) and d(CGTCACGCGC) generated using back-calculation of the nuclear Overhauser effect spectra, a distance geometry algorithm and constrained molecular dynamics. , 1990, Journal of molecular biology.

[61]  L. Mueller,et al.  Triple resonance HNCCCH experiments for correlating exchangeable and nonexchangeable cytidine and uridine base protons in RNA , 1995, Journal of biomolecular NMR.

[62]  H. Schwalbe,et al.  Measurement of H,H-Coupling Constants Associated with .nu.1, .nu. 2, and .nu.3 in Uniformly 13C-Labeled RNA by HCC-TOCSY-CCH-E.COSY , 1995 .

[63]  B. Reid,et al.  Three-dimensional structure of the wild-type lac Pribnow promoter DNA in solution. Two-dimensional nuclear magnetic resonance studies and distance geometry calculations. , 1988, Journal of molecular biology.

[64]  K. Wüthrich,et al.  Extended heteronuclear editing of 2D 1H NMR spectra of isotope-labeled proteins, using the X(ω1, ω2) double half filter , 1989 .

[65]  P. Moore,et al.  Two-dimensional hetero-TOCSY-NOESY. Correlation of phosphorus-31 resonances with anomeric and aromatic proton resonances in RNA , 1992 .

[66]  M. Nilges,et al.  NMR analysis of helix I from the 5S RNA of Escherichia coli. , 1992, Biochemistry.

[67]  David Neuhaus,et al.  The Nuclear Overhauser Effect in Structural and Conformational Analysis , 1989 .

[68]  A. Pardi Multidimensional heteronuclear NMR experiments for structure determination of isotopically labeled RNA. , 1995, Methods in enzymology.

[69]  R. Batey,et al.  Preparation of isotopically enriched RNAs for heteronuclear NMR. , 1995, Methods in enzymology.

[70]  Patel,et al.  Molecular recognition in the bovine immunodeficiency virus Tat peptide-TAR RNA complex. , 1995, Chemistry & biology.

[71]  Nobutoshi Ito,et al.  Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin , 1994, Nature.

[72]  C. Post Internal motional averaging and three-dimensional structure determination by nuclear magnetic resonance. , 1992, Journal of molecular biology.

[73]  A. Pardi,et al.  Three-dimensional heteronuclear NMR studies of RNA , 1992, Nature.

[74]  Direct Correlation of Exchangeable and Nonexchangeable Protons on Purine Bases in 13C,15N-Labeled RNA Using a HCCNH-TOCSY Experiment , 1996 .

[75]  P. Moore,et al.  Assignment of NH resonances in nucleic acids using natural abundance 15N‐1H correlation spectroscopy with spin‐echo and gradient pulses , 1993, FEBS letters.

[76]  G. Lancelot,et al.  Selectively carbon-13-enriched DNA: carbon-13 and proton assignments of the lac operator by two-dimensional relayed HMQC experiments , 1993 .

[77]  C. Griesinger,et al.  Determination of 3J(C,P) and 3J(H,P) coupling constants in nucleotide oligomers with FIDS-HSQC , 1993 .

[78]  J. Williamson,et al.  Binding of an HIV Rev peptide to Rev responsive element RNA induces formation of purine-purine base pairs. , 1994, Biochemistry.

[79]  I. Tinoco,et al.  Structure of a small RNA hairpin. , 1993, Nucleic acids research.

[80]  B. Pullman,et al.  Quantum mechanical calculations of NMR chemical shifts in nucleic acids , 1987, Quarterly Reviews of Biophysics.

[81]  C. Oubridge,et al.  Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. , 1995, Journal of molecular biology.

[82]  F. D. Leeuw,et al.  The relationship between proton-proton NMR coupling constants and substituent electronegativities—I : An empirical generalization of the karplus equation , 1980 .

[83]  G. Varani,et al.  Carbon assignments and heteronuclear coupling constants for an RNA oligonucleotide from natural abundance carbon-13-proton correlated experiments , 1991 .

[84]  J. Feigon,et al.  Correlation of nucleotide base and sugar protons in a 15N-labeled HIV-1 RNA oligonucleotide by 1H-15N HSQC experiments , 1994, Journal of biomolecular NMR.

[85]  G. Wider,et al.  Solvent suppression using a spin lock in 2D and 3D NMR spectroscopy with H2O solutions , 1989 .

[86]  Cornelis W. Hilbers,et al.  Resonance assignments of non-exchangeable protons in B type DNA oligomers, an overview , 1988, Nucleic Acids Res..

[87]  I. Tinoco,et al.  Nucleoside triples from the group I intron. , 1993, Biochemistry.

[88]  M. Guéron,et al.  Studies of base pair kinetics by NMR measurement of proton exchange. , 1995, Methods in enzymology.

[89]  J. Santoro,et al.  A constant-time 2D overbodenhausen experiment for inverse correlation of isotopically enriched species , 1992 .

[90]  J. Chattopadhyaya,et al.  Deuteriation of sugar protons simplify NMR assignments and structure determination of large oligonucleotide by the 1H-NMR window approach. , 1993, Nucleic acids research.

[91]  S. Holbrook,et al.  Structure of an RNA double helix including uracil-uracil base pairs in an internal loop , 1995, Nature Structural Biology.

[92]  K. Wüthrich,et al.  Sequential NMR assignments of labile protons in DNA using two-dimensional nuclear-Overhauser-enhancement spectroscopy with three jump-and-return pulse sequences. , 1987, European journal of biochemistry.

[93]  A. Serianni,et al.  sup 13 C-enriched ribonucleosides: Synthesis and application of sup 13 C- sup 1 H and sup 13 C- sup 13 C spin-coupling constants to assess furanose and N-glycoside bond conformations , 1990 .

[94]  K. Wüthrich,et al.  Heteronuclear filters in two-dimensional [1H, 1H]-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions , 1990, Quarterly Reviews of Biophysics.

[95]  R. Shafer,et al.  Solution structure of the octamer motif in immunoglobulin genes via restrained molecular dynamics calculations. , 1994, Biochemistry.

[96]  F. Dahlquist,et al.  2D and 3D NMR spectroscopy employing carbon-13/carbon-13 magnetization transfer by isotropic mixing. Spin system identification in large proteins , 1990 .

[97]  I. Tinoco,et al.  Synthesis and NMR of RNA with selective isotopic enrichment in the bases. , 1995, Nucleic acids research.

[98]  L. Arnold,et al.  Proton NMR studies of manganese ion binding to tRNA-derived acceptor arm duplexes. , 1993, Nucleic acids research.

[99]  J Grasby,et al.  Hydrogen-bonding contacts in the major groove are required for human immunodeficiency virus type-1 tat protein recognition of TAR RNA. , 1993, Journal of molecular biology.

[100]  D E Wemmer,et al.  Interproton distance bounds from 2D NOE intensities: Effect of experimental noise and peak integration errors , 1995, Journal of biomolecular NMR.

[101]  P. Moore,et al.  Solution structure of an unusually stable RNA tetraplex containing G- and U-quartet structures. , 1992, Biochemistry.

[102]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[103]  R. Kaptein,et al.  Calculation of the nuclear overhauser effect and the determination of proton-proton distances in the presence of internal motions , 1990 .

[104]  J. Harper,et al.  Isotope labeling for 13C relaxation measurements on RNA. , 1995, Methods in enzymology.

[105]  C. Erkelens,et al.  Carbon-13 NMR in conformational analysis of nucleic acid fragments. 2. A reparametrization of the Karplus equation for vicinal NMR coupling constants in CCOP and HCOP fragments. , 1984, Journal of biomolecular structure & dynamics.

[106]  A. Pardi,et al.  An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids. , 1993, Journal of molecular biology.

[107]  A. Pardi,et al.  Solution structure of the CUUG hairpin loop: a novel RNA tetraloop motif. , 1995, Biochemistry.

[108]  C. Erkelens,et al.  Carbon-13 NMR in conformational analysis of nucleic acid fragments. Heteronuclear chemical shift correlation spectroscopy of RNA constituents. , 1983, Nucleic acids research.

[109]  M. Guéron,et al.  A tetrameric DNA structure with protonated cytosine-cytosine base pairs , 1993, Nature.

[110]  J. Chattopadhyaya,et al.  Synthesis of 1′#,2′,3′,4′#,5′,5″-2H6-β-D-ribonucleosides and 1′#, 2′,2″,3′,4′#,5′,5″-2H7-β-D-2′-deoxyribonucleosides for selective suppression of proton resonances in partially-deuterated oligo-DNA, oligo-RNA and in 2,5A core (1H-NMR window) , 1992 .

[111]  D. Crothers,et al.  Correlation of adenine H2/H8 resonances in uniformly 13C labeled RNAs by 2D HCCH-TOCSY : a new tool for 1H assignment , 1994 .

[112]  C. Hilbers,et al.  Overcoming the ambiguity problem encountered in the analysis of nuclear overhauser magnetic resonance spectra of symmetric dimer proteins , 1993 .

[113]  Roger A. Jones,et al.  Nitrogen-15-labeled oligodeoxynucleotides. 5. Use of 15N NMR to probe H-bonding in an O6MeG.cntdot.T base pair , 1993 .

[114]  A. Pardi,et al.  Simple procedure for resonance assignment of the sugar protons in 13C-labeled RNAs , 1992 .

[115]  G. W. Kellogg Proton-detected hetero-TOCSY experiments with application to nucleic acids , 1992 .

[117]  J. Chattopadhyaya,et al.  NMR spectroscopic properties (1H at 500 MHz) of deuterated* ribonucleotide-dimers ApU*, GpC*, partially deuterated 2'-deoxyribonucleotide-dimers d(TpA*), d(ApT*), d(GpC*) and their comparison with natural counterparts (1H-NMR window). , 1993, Journal of biochemical and biophysical methods.

[118]  Sequential backbone assignment of uniformly 13C-labeled RNAs by a two-dimensional P(CC)H-TOCSY triple resonance NMR experiment , 1995, Journal of biomolecular NMR.

[119]  Unambiguous resonance assignments in carbon-13, nitrogen-15-labeled nucleic acids by 3D triple-resonance NMR , 1993 .

[120]  A. Bax,et al.  Spin-echo water suppression for the generation of pure-phase two-dimensional NMR spectra , 1987 .

[121]  D. Gorenstein,et al.  How accurately can oligonucleotide structures be determined from the hybrid relaxation rate matrix/NOESY distance restrained molecular dynamics approach? , 1991, Biochemistry.

[122]  G. Varani,et al.  Solution structure of the N-terminal RNP domain of U1A protein: the role of C-terminal residues in structure stability and RNA binding. , 1996, Journal of molecular biology.

[123]  D. Live,et al.  Influence of the glycosidic torsion angle on 13C and 15N shifts in guanosine nucleotides: Investigations of G-tetrad models with alternating syn and anti bases , 1995, Journal of biomolecular NMR.

[124]  S. Chou,et al.  High-resolution NMR study of a synthetic DNA-RNA hybrid dodecamer containing the consensus pribnow promoter sequence: d(CGTTATAATGCG).r(CGCAUUAUAACG). , 1989, Biochemistry.

[125]  Philip N. Borer,et al.  Proton NMR and structural features of a 24-nucleotide RNA hairpin. , 1995, Biochemistry.

[126]  D. Crothers,et al.  Bent helix formation between RNA hairpins with complementary loops. , 1995, Science.

[127]  G. Harbison,et al.  Determination of the DNA sugar pucker using 13C NMR spectroscopy. , 1989, Biochemistry.

[128]  J. A. Jaeger,et al.  An NMR study of the HIV-1 TAR element hairpin. , 1993, Biochemistry.

[129]  L. Kay,et al.  Comparison of different modes of two-dimensional reverse-correlation NMR for the study of proteins , 1990 .

[130]  J. Puglisi,et al.  Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. , 1992, Nucleic acids research.

[131]  S. Chou,et al.  The structure of a novel DNA duplex formed by human centromere d(TGGAA) repeats with possible implications for chromosome attachment during mitosis. , 1995, Journal of molecular biology.

[132]  A. Gronenborn,et al.  Assessing the quality of solution nuclear magnetic resonance structures by complete cross-validation. , 1993, Science.

[133]  G. Varani,et al.  Conformation and dynamics of an RNA internal loop. , 1989, Biochemistry.

[134]  I. Tinoco,et al.  The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. , 1995, Journal of molecular biology.

[135]  S. Wijmenga,et al.  Three-dimensional homonuclear TOCSY-NOESY of nucleic acids. Possibilities for improved assignments , 1991 .

[136]  J. Chattopadhyaya,et al.  The use of non-uniform deuterium labelling ['NMR-window'] to study the NMR structure of a 21mer RNA hairpin. , 1996, Nucleic acids research.

[137]  M. Gait,et al.  Oligonucleotide synthesis : a practical approach , 1984 .

[138]  R. Hosur,et al.  Determination of solution conformation of DNA backbone: Application of homonuclear (J, δ) spectroscopy , 1990, Biopolymers.

[139]  A. Pardi,et al.  In situ Probing of Adenine Protonation in RNA by 13C NMR , 1994 .

[140]  G. Marius Clore,et al.  1H1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins , 1990 .

[141]  Rolf Boelens,et al.  Iterative procedure for structure determination from proton-proton NOEs using a full relaxation matrix approach. Application to a DNA octamer , 1989 .

[142]  K. Wüthrich,et al.  Sequence‐specific assignment of the backbone 1H‐ and 31P‐nmr lines in a short DNA duplex with homo‐ and heteronuclear correlated spectroscopy , 1985, Biopolymers.

[143]  J W Szostak,et al.  Selection of a ribozyme that functions as a superior template in a self-copying reaction. , 1992, Science.

[144]  Roger A. Jones,et al.  Nitrogen-15-labeled oligodeoxynucleotides. 7. Use of nitrogen-15 NMR to probe hydrogen bonding in an O6MeG.cntdot.C base pair , 1993 .

[145]  J. J. Wu,et al.  500-MHz proton NMR evidence for two solution structures of the common arm base-paired segment of wheat germ 5S ribosomal RNA. , 1990, Biochemistry.

[146]  S. Fujii,et al.  Formation of sheared G:A base pairs in an RNA duplex modelled after ribozymes, as revealed by NMR. , 1994, Nucleic acids research.

[147]  P. Wright,et al.  Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy , 1991 .

[148]  M. Kainosho,et al.  Preparation and heteronuclear 2D NMR spectroscopy of a DNA dodecamer containing a thymidine residue with a uniformly 13C-labeled deoxyribose ring , 1994, Journal of biomolecular NMR.

[149]  R Diamond,et al.  Coordinate-based cluster analysis. , 1995, Acta crystallographica. Section D, Biological crystallography.

[150]  V. Saudek,et al.  Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions , 1992, Journal of biomolecular NMR.

[151]  S. Chou,et al.  Solid-phase synthesis and high-resolution NMR studies of two synthetic double-helical RNA dodecamers: r(CGCGAAUUCGCG) and r(CGCGUAUACGCG). , 1989, Biochemistry.

[152]  A. Gronenborn,et al.  Analysis of the relative contributions of the nuclear Overhauser interproton distance restraints and the empirical energy function in the calculation of oligonucleotide structures using restrained molecular dynamics. , 1989, Biochemistry.

[153]  J. J. Wu,et al.  Wheat germ 5S ribosomal RNA common arm fragment conformations observed by 1H and 31P nuclear magnetic resonance spectroscopy. , 1990, Biochemistry.

[154]  G. Varani,et al.  Structure of the polyadenylation regulatory element of the human U1A pre-mRNA 3'-untranslated region and interaction with the U1A protein. , 1996, Biochemistry.

[155]  J. Karn,et al.  The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. , 1995, Journal of molecular biology.

[156]  J. Prestegard,et al.  Dependence of 13C Chemical Shifts on Glycosidic Torsional Angles in Ribonucleic Acids , 1994 .

[157]  Z. Gdaniec,et al.  Base-pair induced shifts in the tautomeric equilibrium of a modified DNA base. , 1993, Journal of Molecular Biology.

[158]  O. Uhlenbeck,et al.  Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. , 1987, Nucleic acids research.

[159]  L. Mueller,et al.  Improved RNA Structure Determination by Detection of NOE Contacts to Exchange-Broadened Amino Protons , 1995 .

[160]  M. Guéron,et al.  Solution structures of the i-motif tetramers of d(TCC), d(5methylCCT) and d(T5methylCC): novel NOE connections between amino protons and sugar protons. , 1995, Structure.

[161]  Jacques H. van Boom,et al.  The solution structure of the circular trinucleotide cr(GpGpGp) determined by NMR and molecular mechanics calculation , 1994, Nucleic Acids Res..

[162]  G. Varani,et al.  RNA structure and NMR spectroscopy , 1991, Quarterly Reviews of Biophysics.

[163]  Wolfram Saenger,et al.  Principles of Nucleic Acid Structure , 1983 .

[164]  J. J. Wu,et al.  500-MHz proton homonuclear Overhauser evidence for additional base pair in the common arm of eukaryotic ribosomal 5S RNA: wheat germ. , 1987, Biochemistry.

[165]  C. W. Hilbers,et al.  The three-dimensional structure of a DNA hairpin in solution two-dimensional NMR studies and structural analysis of d(ATCCTATTTATAGGAT). , 1991, European journal of biochemistry.

[166]  M. Sundaralingam,et al.  The structure of r(UUCGCG) has a 5′-UU-overhang exhibiting Hoogsteen-like trans U•U base pairs , 1996, Nature Structural Biology.

[167]  A. Klug,et al.  The crystal structure of an AII-RNAhammerhead ribozyme: A proposed mechanism for RNA catalytic cleavage , 1995, Cell.

[168]  I. Kuntz,et al.  [9] Distance geometry , 1989 .

[169]  I. Tinoco,et al.  A base-triple structural domain in RNA. , 1992, Biochemistry.

[170]  J. Tropp Dipolar relaxation and nuclear Overhauser effects in nonrigid molecules: The effect of fluctuating internuclear distances , 1980 .

[171]  G. Varani,et al.  Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns. , 1995, Nucleic acids research.

[172]  D. Bartel,et al.  1H NMR studies of the high-affinity Rev binding site of the Rev responsive element of HIV-1 mRNA: base pairing in the core binding element. , 1994, Biochemistry.

[173]  A. Pardi,et al.  Improved measurement of 13C, 31P J coupling constants in isotopically labeled RNA , 1995, FEBS letters.

[174]  O. Uhlenbeck Tetraloops and RNA folding , 1990, Nature.

[175]  J. Cognet,et al.  The pH dependent configurations of the C.A mispair in DNA. , 1992, Nucleic acids research.

[176]  E. A. Piper,et al.  The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study. , 1984, The Biochemical journal.

[177]  A. Marshall,et al.  Identification and assignment of base pairs in the "tuned helix" of intact and ribonuclease T1 cleavage fragments of wheat germ ribosomal 5S RNA via 500-MHz proton homonuclear Overhauser enhancements. , 1986, Biochemistry.

[178]  G. Varani,et al.  Structure of the P1 helix from group I self-splicing introns. , 1995, Journal of molecular biology.

[179]  J. Hearst,et al.  Solution structures of psoralen monoadducted and cross-linked DNA oligomers by NMR spectroscopy and restrained molecular dynamics. , 1995, Biochemistry.

[180]  A. Serianni,et al.  13C-labeled D-ribose: chemi-enzymic synthesis of various isotopomers. , 1994, Journal of biomolecular structure & dynamics.

[181]  K. Wüthrich,et al.  Conformational studies of d-(AAAAATTTTT)2 using constraints from nuclear overhauser effects and from quantitative analysis of the cross-peak fine structures in two-dimensional 1H nuclear magnetic resonance spectra. , 1989, Biochemistry.

[182]  C. Griesinger,et al.  Determination of proton-proton coupling constants in 13C-labeled molecules , 1992 .

[183]  Pierre Plateau,et al.  Exchangeable proton NMR without base-line distorsion, using new strong-pulse sequences , 1982 .

[184]  Lars Liljas,et al.  Crystal structure of an RNA bacteriophage coat protein–operator complex , 1994, Nature.

[185]  S. Wijmenga,et al.  Sequential Backbone Assignment in C-13-Labeled RNA Via through-Bond Coherence Transfer Using 3-Dimensional Triple-Resonance Spectroscopy (H-1, C-13, P-31) and 2-Dimensional Hetero Tocsy , 1994 .

[186]  O. Jardetzky,et al.  An assessment of the precision and accuracy of protein structures determined by NMR. Dependence on distance errors. , 1994, Journal of molecular biology.

[187]  M. Sekine,et al.  Molecular design of a eukaryotic messenger RNA and its chemical synthesis. , 1992, Nucleic acids research.

[188]  R. Sarma,et al.  NMR study of self‐paired parallel duplex of d(AAAAACCCCC) in solution , 1992, FEBS letters.

[189]  B. Borgias,et al.  Two-dimensional nuclear Overhauser effect: complete relaxation matrix analysis. , 1989, Methods in enzymology.

[190]  F. D. Leeuw,et al.  The relationship between proton–proton NMR coupling constants and substituent electronegativities. II—conformational analysis of the sugar ring in nucleosides and nucleotides in solution using a generalized Karplus equation , 1981 .

[191]  Richard R. Ernst,et al.  Elucidation of cross relaxation in liquids by two-dimensional N.M.R. spectroscopy , 1980 .

[192]  David G. Gorenstein,et al.  Phosphorus-31 NMR : principles and applications , 1984 .

[193]  K. Hall,et al.  Properties of a U1/mRNA 5' splice site duplex containing pseudouridine as measured by thermodynamic and NMR methods. , 1991, Biochemistry.

[194]  W. McClain,et al.  Functional Evidence for Indirect Recognition of G·U in tRNAAla by Alanyl-tRNA Synthetase , 1996, Science.

[195]  G. Varani,et al.  The conformation of loop E of eukaryotic 5S ribosomal RNA. , 1993, Biochemistry.

[196]  J. Keeler,et al.  Minimisation of sensitivity losses due to the use of gradient pulses in triple-resonance NMR of proteins , 1995, Journal of biomolecular NMR.

[197]  K. Hall,et al.  Interaction of RNA hairpins with the human U1A N-terminal RNA binding domain. , 1994, Biochemistry.

[198]  B. Farmer,et al.  Unambiguous through-bond sugar-to-base correlations for purines in 13C, 15N-labeled nucleic acids: The HsCsNb, HsCs(N)bCb, and HbNbCb experiments , 1994, Journal of biomolecular NMR.

[199]  K. Flaherty,et al.  Three-dimensional structure of a hammerhead ribozyme , 1994, Nature.

[200]  R. R. Ernst,et al.  Practical aspects of the E.COSY technique. Measurement of scalar spin-spin coupling constants in peptides , 1987 .

[201]  J. Feigon,et al.  Proton nuclear magnetic resonance assignments and structural characterization of an intramolecular DNA triplex. , 1992, Journal of molecular biology.

[202]  K. Maskos,et al.  NMR study of G.A and A.A pairing in (dGCGAATAAGCG)2. , 1993, Biochemistry.

[203]  C. W. Hilbers,et al.  Nucleic acids and nuclear magnetic resonance. , 1988, European journal of biochemistry.

[204]  G. Varani,et al.  Structure of an unusually stable RNA hairpin. , 1991, Biochemistry.

[205]  D. Patel,et al.  Characterization of Protonated Cytidine in Oligonucleotides by 15n nmr Studies at Natural Abundance , 1991 .

[206]  C. Griesinger,et al.  Determination of Hα,Hβ and Hβ,C′ coupling constants in13C-labeled proteins , 1992 .

[207]  G. A. van der Marel,et al.  Structure determination of a DNA octamer in solution by NMR spectroscopy. Effect of fast local motions. , 1991, Biochemistry.

[208]  Jeffrey W. Peng,et al.  Mapping of Spectral Density Functions Using Heteronuclear NMR Relaxation Measurements , 1992 .

[209]  B. Brooks,et al.  Absorption mode two‐dimensional NOE spectroscopy of exchangeable protons in oligonucleotides , 1987, FEBS letters.

[210]  D. Crothers,et al.  Sequential correlation of anomeric ribose protons and intervening phosphorus in RNA oligonucleotides by a 1H,13C,31P triple resonance experiment: HCP-CCH-TOCSY , 1995, Journal of biomolecular NMR.

[211]  L. Mueller,et al.  Through-bond correlation of adenine protons in a 13C-labeled ribozyme , 1994 .

[212]  B. Schweitzer,et al.  Two- and three-dimensional 31P-driven NMR procedures for complete assignment of backbone resonances in oligodeoxyribonucleotides , 1993, Journal of biomolecular NMR.

[213]  J. Feigon,et al.  Two-and three-dimensional HCN experiments for correlating base and sugar resonances in 15N, 13C-labeled RNA oligonucleotides , 1993, Journal of biomolecular NMR.

[214]  J. Schmidt,et al.  15N labeling of oligodeoxynucleotides for NMR studies of DNA-ligand interactions. , 1987, Nucleic acids research.

[215]  D. Turner,et al.  Structure of (rGGCGAGCC)2 in solution from NMR and restrained molecular dynamics. , 1993, Biochemistry.

[216]  J. Feigon,et al.  Two-dimensional triple-resonance HCNCH experiment for direct correlation of ribose H1' and base H8, H6 protons in 13C,15N-labeled RNA oligonucleotides , 1993 .

[217]  R. Hogrefe,et al.  Structural study of a DNA.RNA hybrid duplex with a chiral phosphorothioate moiety by NMR: extraction of distance and torsion angle constraints and imino proton exchange rates. , 1994, Biochemistry.

[218]  A. Bax,et al.  Assignment of the 31P and 1H resonances in oligonucleotides by two‐dimensional NMR spectroscopy , 1986, FEBS letters.

[219]  A. Pardi,et al.  Distinguishing between duplex and hairpin forms of RNA by 15N–1H heteronuclear NMR , 1994, FEBS letters.