Parameter identification of Bouc-Wen model for MR fluid dampers using adaptive charged system search optimization
暂无分享,去创建一个
[1] Y. Wen. Method for Random Vibration of Hysteretic Systems , 1976 .
[2] B. Farahmand Azar,et al. SEISMIC MITIGATION OF TALL BUILDINGS USING MAGNETORHEOLOGICAL DAMPERS , 2011 .
[3] A. Kaveh,et al. A novel heuristic optimization method: charged system search , 2010 .
[4] Armen Der Kiureghian,et al. Generalized Bouc-Wen model for highly asymmetric hysteresis , 2006 .
[5] F. Ikhouane,et al. Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model , 2007 .
[6] Yi-Qing Ni,et al. IDENTIFICATION OF NON-LINEAR HYSTERETIC ISOLATORS FROM PERIODIC VIBRATION TESTS , 1998 .
[7] F. Ikhouane,et al. On the Hysteretic Bouc–Wen Model , 2005 .
[8] Mohammad Noori,et al. Random Vibration of Degrading, Pinching Systems , 1985 .
[9] Yongmin Yang,et al. Parameter identification of inelastic structures under dynamic loads , 2002 .
[10] Shirley J. Dyke,et al. Phenomenological Model of a Magnetorheological Damper , 1996 .
[11] Greg Foliente,et al. Hysteresis Modeling of Wood Joints and Structural Systems , 1995 .
[12] C. K. Dimou,et al. Identification of Bouc-Wen hysteretic systems using particle swarm optimization , 2010 .
[13] Billie F. Spencer,et al. Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction , 1996 .
[14] Hamid Reza Karimi,et al. Semiactive Backstepping Control for Vibration Reduction in a Structure with Magnetorheological Damper Subject to Seismic Motions , 2009 .
[15] Billie F. Spencer,et al. Dynamic Modeling of Large-Scale Magnetorheological Damper Systems for Civil Engineering Applications , 2004 .
[16] N. Wereley,et al. Idealized Hysteresis Modeling of Electrorheological and Magnetorheological Dampers , 1998 .
[17] B. Farahmand Azar,et al. Semi‐active direct control method for seismic alleviation of structures using MR dampers , 2013 .
[18] Mohammed Ismail,et al. The Hysteresis Bouc-Wen Model, a Survey , 2009 .
[19] Fayal Ikhouane,et al. Systems with Hysteresis , 2007 .
[20] A. Kaveh,et al. Charged system search for optimal design of frame structures , 2012, Appl. Soft Comput..
[21] Nopdanai Ajavakom,et al. On system identification and response prediction of degrading structures , 2006 .
[22] V. K. Koumousis,et al. Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm , 2008 .
[23] Seung-Ik Lee,et al. A hysteresis model for the field-dependent damping force of a magnetorheological damper , 2001 .
[24] Thomas T. Baber,et al. Random Vibration Hysteretic, Degrading Systems , 1981 .
[25] Hyung-Jo Jung,et al. CONTROL OF SEISMICALLY EXCITED CABLE-STAYED BRIDGE EMPLOYING MAGNETORHEOLOGICAL FLUID DAMPERS , 2003 .
[26] Riccardo Poli,et al. Particle swarm optimization , 1995, Swarm Intelligence.
[27] Shirley J. Dyke,et al. PHENOMENOLOGICAL MODEL FOR MAGNETORHEOLOGICAL DAMPERS , 1997 .
[28] Bijan Samali,et al. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization , 2006 .
[29] Shirley J. Dyke,et al. Semiactive Control Strategies for MR Dampers: Comparative Study , 2000 .
[30] Siamak Talatahari,et al. Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures , 2009 .
[31] Oriol Gomis-Bellmunt,et al. A limit cycle approach for the parametric identification of hysteretic systems , 2008, Syst. Control. Lett..
[32] Siamak Talatahari,et al. An improved ant colony optimization for constrained engineering design problems , 2010 .
[33] B Samali,et al. Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. , 2007, ISA transactions.
[34] H. Zhang,et al. Parameter Analysis of the Differential Model of Hysteresis , 2004 .
[35] A. K-Karamodin,et al. Semi‐active control of structures using neuro‐predictive algorithm for MR dampers , 2008 .