Parameter identification of Bouc-Wen model for MR fluid dampers using adaptive charged system search optimization

In this article, the charged system search (CSS) optimization method is improved to identify the parameters of a non-linear hysteretic Bouc-Wen differential model. The CSS is suitable for those optimization problems involving non-smooth or non-convex domains. Bouc-Wen is a well-established non-linear model which has been used to portray the hysteretic and high non-linear real behavior of numerous physical and mechanical systems. To improve the effectiveness and adaptability of the CSS algorithm, it is combined with sub-optimization mechanism. The obtained results show that the adaptive CSS embodies great robustness and accuracy to be successfully employed in such highly non-linear identification problems.

[1]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[2]  B. Farahmand Azar,et al.  SEISMIC MITIGATION OF TALL BUILDINGS USING MAGNETORHEOLOGICAL DAMPERS , 2011 .

[3]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[4]  Armen Der Kiureghian,et al.  Generalized Bouc-Wen model for highly asymmetric hysteresis , 2006 .

[5]  F. Ikhouane,et al.  Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model , 2007 .

[6]  Yi-Qing Ni,et al.  IDENTIFICATION OF NON-LINEAR HYSTERETIC ISOLATORS FROM PERIODIC VIBRATION TESTS , 1998 .

[7]  F. Ikhouane,et al.  On the Hysteretic Bouc–Wen Model , 2005 .

[8]  Mohammad Noori,et al.  Random Vibration of Degrading, Pinching Systems , 1985 .

[9]  Yongmin Yang,et al.  Parameter identification of inelastic structures under dynamic loads , 2002 .

[10]  Shirley J. Dyke,et al.  Phenomenological Model of a Magnetorheological Damper , 1996 .

[11]  Greg Foliente,et al.  Hysteresis Modeling of Wood Joints and Structural Systems , 1995 .

[12]  C. K. Dimou,et al.  Identification of Bouc-Wen hysteretic systems using particle swarm optimization , 2010 .

[13]  Billie F. Spencer,et al.  Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction , 1996 .

[14]  Hamid Reza Karimi,et al.  Semiactive Backstepping Control for Vibration Reduction in a Structure with Magnetorheological Damper Subject to Seismic Motions , 2009 .

[15]  Billie F. Spencer,et al.  Dynamic Modeling of Large-Scale Magnetorheological Damper Systems for Civil Engineering Applications , 2004 .

[16]  N. Wereley,et al.  Idealized Hysteresis Modeling of Electrorheological and Magnetorheological Dampers , 1998 .

[17]  B. Farahmand Azar,et al.  Semi‐active direct control method for seismic alleviation of structures using MR dampers , 2013 .

[18]  Mohammed Ismail,et al.  The Hysteresis Bouc-Wen Model, a Survey , 2009 .

[19]  Fayal Ikhouane,et al.  Systems with Hysteresis , 2007 .

[20]  A. Kaveh,et al.  Charged system search for optimal design of frame structures , 2012, Appl. Soft Comput..

[21]  Nopdanai Ajavakom,et al.  On system identification and response prediction of degrading structures , 2006 .

[22]  V. K. Koumousis,et al.  Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm , 2008 .

[23]  Seung-Ik Lee,et al.  A hysteresis model for the field-dependent damping force of a magnetorheological damper , 2001 .

[24]  Thomas T. Baber,et al.  Random Vibration Hysteretic, Degrading Systems , 1981 .

[25]  Hyung-Jo Jung,et al.  CONTROL OF SEISMICALLY EXCITED CABLE-STAYED BRIDGE EMPLOYING MAGNETORHEOLOGICAL FLUID DAMPERS , 2003 .

[26]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[27]  Shirley J. Dyke,et al.  PHENOMENOLOGICAL MODEL FOR MAGNETORHEOLOGICAL DAMPERS , 1997 .

[28]  Bijan Samali,et al.  A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization , 2006 .

[29]  Shirley J. Dyke,et al.  Semiactive Control Strategies for MR Dampers: Comparative Study , 2000 .

[30]  Siamak Talatahari,et al.  Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures , 2009 .

[31]  Oriol Gomis-Bellmunt,et al.  A limit cycle approach for the parametric identification of hysteretic systems , 2008, Syst. Control. Lett..

[32]  Siamak Talatahari,et al.  An improved ant colony optimization for constrained engineering design problems , 2010 .

[33]  B Samali,et al.  Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. , 2007, ISA transactions.

[34]  H. Zhang,et al.  Parameter Analysis of the Differential Model of Hysteresis , 2004 .

[35]  A. K-Karamodin,et al.  Semi‐active control of structures using neuro‐predictive algorithm for MR dampers , 2008 .