Moment Determinacy of Powers and Products of Nonnegative Random Variables

We find conditions which guarantee moment (in)determinacy of powers and products of nonnegative random variables. We establish new and general results which are based either on the rate of growth of the moments of a random variable or on conditions about the distribution itself. For the class of generalized gamma random variables, we show that the power and the product of such variables share the same moment determinacy property. A similar statement holds for half-logistic random variables. Besides answering new questions in this area, we either extend some previously known results or provide new and transparent proofs of existing results.

[1]  A. Pakes,et al.  Remarks on converse Carleman and Krein criteria for the classical moment problem , 2001, Journal of the Australian Mathematical Society.

[2]  Henrik L. Pedersen On Krein's Theorem for Indeterminacy of the Classical Moment Problem , 1998 .

[3]  H. J. Malik,et al.  Probability Density Function of the Product and Quotient of Two Correlated Exponential Random Variables , 1986, Canadian Mathematical Bulletin.

[4]  Henrick John Malik Exact Distribution of the Product of Independent Generalized Gamma Variables with the Same Shape Parameter , 1968 .

[5]  Janos Galambos Products of random variables , 2004 .

[6]  Lin Gwo Dong,et al.  Characterizations of the L-class of life distributions , 1998 .

[7]  Jordan Stoyanov,et al.  Krein condition in probabilistic moment problems , 2000 .

[8]  Sofiya Ostrovska,et al.  A new proof that the product of three or more exponential random variables is moment-indeterminate , 2010 .

[9]  Jordan Stoyanov,et al.  Counterexamples in Probability , 1989 .

[10]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[11]  Eric V. Slud,et al.  The Moment Problem for Polynomial Forms in Normal Random Variables , 1993 .

[12]  A. Pakes,et al.  LENGTH‐BIASING, CHARACTERIZATIONS OF LAWS AND THE MOMENT PROBLEM , 1992 .

[13]  Gérard Duchamp,et al.  On certain non-unique solutions of the Stieltjes moment problem , 2009, Discret. Math. Theor. Comput. Sci..

[14]  Christian Berg,et al.  Rotation invariant moment problems , 1991 .

[15]  F.W.J. Olver INTRODUCTION TO ASYMPTOTIC ANALYSIS , 1974 .

[16]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[17]  Giuseppe Abreu,et al.  On the Moment-Determinance and Random Mixture of Nakagami-m Variates , 2010 .

[18]  G. D. Lin,et al.  The Logarithmic Skew-Normal Distributions are Moment-Indeterminate , 2009, Journal of Applied Probability.

[19]  Christoph Koutschan,et al.  The integrals in Gradshteyn and Ryzhik. Part 22: Bessel-K functions , 2012 .

[20]  Jordan Stoyanov,et al.  Hamburger moment problem for powers and products of random variables , 2014 .

[21]  J. Galambos,et al.  Products of Random Variables: Applications to Problems of Physics and to Arithmetical Functions , 2004 .

[22]  R. Dawes Corrections to a paper , 1862 .

[23]  R. Carmona,et al.  Parabolic Anderson Problem and Intermittency , 1994 .

[24]  Gwo Dong Lin,et al.  THE CUBE OF A LOGISTIC DISTRIBUTION IS INDETERMINATE , 1997 .

[25]  J. Crank Tables of Integrals , 1962 .

[26]  Christian Berg,et al.  The Cube of a Normal Distribution is Indeterminate , 1988 .

[27]  Gwo Dong Lin,et al.  On the moment problems , 1997 .

[28]  S. Foss,et al.  An Introduction to Heavy-Tailed and Subexponential Distributions , 2011 .

[29]  G. D. Lin,et al.  Hardy's Condition in the Moment Problem for Probability Distributions , 2013 .

[30]  Christian Berg,et al.  On Powers of Stieltjes Moment Sequences, I , 2005 .