Chiral and Achiral Charge‐Transfer Chromophores with a Dendralene‐Type Backbone by Electronically Controlled Cycloaddition/Cycloreversion Cascades

Chiral and achiral push-pull chromophores have been prepared by cascades of sequential [2+2] cycloadditions of tetra-cyanoethene (TCNE) and tetrathiafulvalene (TTF) to different oligoynes. Thermal [2+2] cycloaddition of TCNE to donor-substituted alkynes, followed by electrocyclic ring-opening of the initially formed cyclobutenes, affords donor-substituted 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs). Similarly, TTF reacts with electron-deficient C≡C bonds to give the corresponding buta-1,3-diene derivatives, 1,2-bis(1,3-dithiol-2-ylidene)ethanes. Thus, achiral [AB]-type oligomers were synthesized from N,N-dialkylanilino (DAA)-substituted tetraynes and hexaynes and chiral [AB]-type oligomers from alkyne-substituted 1,1'-binaphthalenes. The [AB]-type oligomers exhibit complex conformational equilibria in solution, as revealed by 1 H and 13 C NMR spectroscopy. Therefore, the circular dichroism (CD) spectra of the chiral [AB]-type oligomers were measured to investigate whether a preferred conformation of the dendralene-type backbone is induced by the optically active 1,1'-binaphthalene moiety. Electrochemical studies by cyclic voltammetry (CV) and rotating-disk voltammetry (RDV) showed large cathodic shifts of the first oxidation potentials for some of the chiral and achiral [AB]-type oligomers due to sterically enforced π-deconjugation of the acceptor and donor moieties. The new multivalent systems feature intense, bathochromically shifted intramolecular charge-transfer (CT) bands in the UV/Vis spectra. Extended, donor-substituted TCBDs, which are obtained by mono-addition of TCNE to the hexaynes, exhibit low optical and electrochemical HOMO-LUMO gaps. In addition, a large third-order optical nonlinearity was measured for one of these TCBDs by degenerate four-wave mixing (DFWM).

[1]  F. Diederich,et al.  Mechanistic investigation of the dipolar [2+2] cycloaddition-cycloreversion reaction between 4-(N,N-dimethylamino)phenylacetylene and arylated 1,1-dicyanovinyl derivatives to form intramolecular charge-transfer chromophores. , 2010, Chemistry.

[2]  Rik R. Tykwinski,et al.  Polyine mit tert‐Butyl‐Endgruppen: kristallographischer Nachweis einer reduzierten Bindungslängenalternanz , 2009 .

[3]  F. Diederich,et al.  N-arylated 3,5-dihydro-4H-dinaphtho[2,1-c:1',2'-e]azepines: axially chiral donors with high helical twisting powers for nonplanar push-pull chromophores. , 2009, Chemistry.

[4]  F. Diederich,et al.  Origin of intense intramolecular charge-transfer interactions in nonplanar push-pull chromophores. , 2009, Chemistry.

[5]  Ana G. Petrovic,et al.  Chiral induction from allenes into twisted 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs): conformational assignment by circular dichroism spectroscopy. , 2009, Chemistry.

[6]  Wolfgang Freude,et al.  Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics , 2009, Proceedings of the IEEE.

[7]  M. Paddon-Row,et al.  Practical synthesis of the dendralene family reveals alternation in behavior. , 2009, Angewandte Chemie.

[8]  F. Diederich,et al.  Organic super-acceptors with efficient intramolecular charge-transfer interactions by [2+2] cycloadditions of TCNE, TCNQ, and F4-TCNQ to donor-substituted cyanoalkynes. , 2009, Chemistry.

[9]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[10]  F. Diederich,et al.  New donor-acceptor chromophores by formal [2+2] cycloaddition of donor-substituted alkynes to dicyanovinyl derivatives. , 2009, Organic & biomolecular chemistry.

[11]  F. Diederich,et al.  Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. , 2009, Accounts of chemical research.

[12]  R. Tykwinski,et al.  Synthesis of tri- and tetraynes using a butadiynyl synthon. , 2009, Chemical communications.

[13]  Ivan Biaggio,et al.  A High‐Optical Quality Supramolecular Assembly for Third‐Order Integrated Nonlinear Optics , 2008 .

[14]  F. Diederich,et al.  1,3-Diethynylallenes (DEAs): enantioselective synthesis, absolute configuration, and chiral induction in 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs). , 2008, Chemistry.

[15]  T. Michinobu Click-type reaction of aromatic polyamines for improvement of thermal and optoelectronic properties. , 2008, Journal of the American Chemical Society.

[16]  Taku Shoji,et al.  Synthesis, properties, and redox behavior of mono-, bis-, and tris[1,1,4,4,-tetracyano-2-(1-azulenyl)-3-butadienyl] chromophores binding with benzene and thiophene cores. , 2008, Chemistry.

[17]  Daoben Zhu,et al.  Charge transfer chromophore-stopped [2]rotaxane through [2 + 2] cycloaddition. , 2008, The Journal of organic chemistry.

[18]  B. Skelton,et al.  Reactions of Alkynyl−Ruthenium Complexes with the Ketene Dithioacetal, (MeS)2C═C(CN)2 , 2008 .

[19]  Changshui Huang,et al.  Morphology transition and aggregation-induced emission of an intramolecular charge-transfer compound. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[20]  A. Willis,et al.  One-step synthesis and exploratory chemistry of [5]dendralene. , 2008, Angewandte Chemie.

[21]  F. Diederich,et al.  A novel reaction of 7,7,8,8-tetracyanoquinodimethane (TCNQ): charge-transfer chromophores by [2 + 2] cycloaddition with alkynes. , 2007, Chemical communications.

[22]  F. Diederich,et al.  Charge‐Transfer‐Chromophore durch Cycloaddition‐Retro‐Elektrocyclisierung: multivalente Systeme und Kaskadenreaktionen , 2007 .

[23]  F. Diederich,et al.  Property tuning in charge-transfer chromophores by systematic modulation of the spacer between donor and acceptor. , 2007, Chemistry.

[24]  Ivan Biaggio,et al.  Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules , 2007 .

[25]  R. Tykwinski,et al.  Oligomeric and polymeric systems with a cross-conjugated pi-framework. , 2006, Chemical reviews.

[26]  F. Diederich,et al.  Synthesis and characteristics of a nonaggregating tris(tetrathiafulvaleno)dodecadehydro[18]annulene. , 2006, Chemistry.

[27]  F. Diederich,et al.  Donor-substituted 1,1,4,4-tetracyanobutadienes (TCBDS): new chromophores with efficient intramolecular charge-transfer interactions by atom-economic synthesis. , 2006, Chemistry.

[28]  Ivan Biaggio,et al.  Highly efficient third-order optical nonlinearities in donor-substituted cyanoethynylethene molecules. , 2005, Optics letters.

[29]  A. Minatti,et al.  Quinoid BINOL-type compounds as a novel class of chiral ligands , 2005 .

[30]  F. Diederich,et al.  Donor-substituted cyanoethynylethenes: pi-conjugation and band-gap tuning in strong charge-transfer chromophores. , 2005, Chemistry.

[31]  Ivan Biaggio,et al.  A new class of organic donor-acceptor molecules with large third-order optical nonlinearities. , 2005, Chemical communications.

[32]  Robert McDonald,et al.  Synthesis, structure, and nonlinear optical properties of diarylpolyynes. , 2005, Organic letters.

[33]  A. Punzi,et al.  New stereoselective methodology for the synthesis of dihydroxerulin and xerulin, potent inhibitors of the biosynthesis of cholesterol , 2004 .

[34]  Y. Yamashita,et al.  Novel Donor–π–Acceptor Compounds Containing 1,3-Dithiol-2-ylidene and Tetracyanobutadiene Units , 2004 .

[35]  T. Wu,et al.  Asymmetric allylboration of aldehydes and ketones using 3,3'-disubstitutedbinaphthol-modified boronates. , 2004, Organic letters.

[36]  F. Diederich,et al.  Donor‐Substituted Perethynylated Dehydroannulenes and Radiaannulenes: Acetylenic Carbon Sheets Featuring Intense Intramolecular Charge Transfer , 2004 .

[37]  Wenbin Lin,et al.  Chiral metallacyclophanes: self-assembly, characterization, and application in asymmetric catalysis. , 2004, Organic letters.

[38]  R. Tykwinski,et al.  Synthesis of unsymmetrically substituted 1,3-butadiynes and 1,3,5-hexatriynes via alkylidene carbenoid rearrangements. , 2003, The Journal of organic chemistry.

[39]  A. Hirsch,et al.  End-cap stabilized oligoynes: model compounds for the linear sp carbon allotrope carbyne. , 2002, Chemistry.

[40]  H. Hopf Dendralene – der Durchbruch , 2001 .

[41]  F. Diederich,et al.  Molecular Switching: A Fully Reversible, Optically Active Photochemical Switch Based on a Tetraethynylethene‐1,1′‐Binaphthalene Hybrid System , 2000 .

[42]  A. Hirsch,et al.  ADDITION CHEMISTRY OF ROD-SHAPED 1,6-DICYANOHEXATRIYNE : REGIOSELECTIVITY CONTROL BY THE REMOTE CYANO FUNCTION , 1999 .

[43]  S. Gibson,et al.  2,4,6-triarylchalcogenopyrylium dyes related in structure to the antitumor agent AA1 as in vitro sensitizers for the photodynamic therapy of cancer. , 1999, Journal of medicinal chemistry.

[44]  W. R. Dolbier,et al.  Synthetic and Mechanistic Aspects of the Reaction of 1,1-Difluoro-2,2-bis(dimethylamino)ethene with Ethyl Propiolate. , 1999, The Journal of organic chemistry.

[45]  Maria Cristina Burla,et al.  SIR97: a new tool for crystal structure determination and refinement , 1999 .

[46]  F. Diederich,et al.  Molecular Recognition of Pyranosides by a Family of Trimeric, 1,1′‐Binaphthalene‐Derived Cyclophane Receptors , 1998 .

[47]  H. Chow,et al.  Stepwise synthesis and characterization of oligomers based on 1,1′-binaphthol with 3,3′-acetylene spacer , 1998 .

[48]  J. Brédas,et al.  Donor-acceptor diphenylacetylenes : geometric structure, electronic structure, and second-order nonlinear optical properties , 1993 .

[49]  P. G. Jones,et al.  Über eine Metathesereaktion von Tetrathiafulvalen (TTF) , 1991 .

[50]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[51]  H. Hopf Dendralene: eine vernachlässigte Gruppe hochungesättigter Kohlenwasserstoffe , 1984 .

[52]  D. Richardson,et al.  Determination of E20-E10 in multistep charge transfer by stationary-electrode pulse and cyclic voltammetry: application to binuclear ruthenium ammines , 1981 .

[53]  M. R. Snow,et al.  Cyclopentadienyl-ruthenium and -osmium chemistry. Cleavage of tetracyanoethylene under mild conditions: X-ray crystal structures of [Ru{η3-C(CN)2CPhCC(CN)2}(PPh3)(η-C5H5)] and [Ru{C[C(CN)2]CPhC(CN)2}-(CNBut)(PPh3)(η-C5H5)] , 1981 .

[54]  Jean-Michel Savéant,et al.  Convolution potential sweep voltammetryII. Multistep nernstian waves , 1973 .