Priors in Web Search

The invention provides generally a method and system for selecting an element of a computer generated drawing model graphically represented on a computer screen wherein each selectable element of the model occupies a position in a hierarchical tree describing the model. A pointer can be used to specify a position on the screen and pre-selecting an element on an axis extending from the position of the pointer along a predetermined direction such that the direction is not in the plane of the screen. Pre-selection can be moved from a first position on the hierarchical tree to a second position on the hierarchical tree in response to activation of an arrow mechanism. Full selection can be accomplished by activating a selection mechanism.

[1]  Jacob Cohen,et al.  Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. , 1968 .

[2]  Djoerd Hiemstra,et al.  The Importance of Prior Probabilities for Entry Page Search , 2002, SIGIR '02.

[3]  Roi Blanco,et al.  Probabilistic Document Length Priors for Language Models , 2008, ECIR.

[4]  Tie-Yan Liu,et al.  BrowseRank: letting web users vote for page importance , 2008, SIGIR '08.

[5]  Elad Yom-Tov,et al.  What makes a query difficult? , 2006, SIGIR.

[6]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[7]  Tao Qin,et al.  LETOR: Benchmark Dataset for Research on Learning to Rank for Information Retrieval , 2007 .

[8]  Benjamin Rey,et al.  Generating query substitutions , 2006, WWW '06.

[9]  J. Cleary,et al.  \self-organized Language Modeling for Speech Recognition". In , 1997 .

[10]  Peter Bailey,et al.  Relevance assessment: are judges exchangeable and does it matter , 2008, SIGIR '08.

[11]  Andrei Broder,et al.  A taxonomy of web search , 2002, SIGF.

[12]  Eugene Agichtein,et al.  Identifying "best bet" web search results by mining past user behavior , 2006, KDD '06.

[13]  Iadh Ounis,et al.  Combination of Document Priors in Web Information Retrieval , 2007, RIAO.

[14]  Andrei Z. Broder,et al.  To swing or not to swing: learning when (not) to advertise , 2008, CIKM '08.

[15]  Ji-Rong Wen,et al.  WWW 2007 / Track: Search Session: Personalization A Largescale Evaluation and Analysis of Personalized Search Strategies ABSTRACT , 2022 .

[16]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[17]  W. Bruce Croft,et al.  Predicting query performance , 2002, SIGIR '02.

[18]  Susan T. Dumais,et al.  To personalize or not to personalize: modeling queries with variation in user intent , 2008, SIGIR '08.

[19]  Amit Singhal,et al.  Pivoted document length normalization , 1996, SIGIR 1996.

[20]  W. Bruce Croft,et al.  A language modeling approach to information retrieval , 1998, SIGIR '98.

[21]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[22]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[23]  ChengXiang Zhai,et al.  Mining term association patterns from search logs for effective query reformulation , 2008, CIKM '08.

[24]  Kenneth Ward Church,et al.  Poisson mixtures , 1995, Natural Language Engineering.

[25]  Jure Leskovec,et al.  Web projections: learning from contextual subgraphs of the web , 2007, WWW '07.

[26]  Ricardo Baeza-Yates,et al.  Improved query difficulty prediction for the web , 2008, CIKM '08.

[27]  Fernando Diaz,et al.  Using temporal profiles of queries for precision prediction , 2004, SIGIR '04.

[28]  Kenneth Ward Church,et al.  Entropy of search logs: how hard is search? with personalization? with backoff? , 2008, WSDM '08.

[29]  Zhenyu Liu,et al.  Automatic identification of user goals in Web search , 2005, WWW '05.

[30]  Stephen E. Robertson,et al.  Relevance weighting for query independent evidence , 2005, SIGIR '05.

[31]  Eric Brill,et al.  Beyond PageRank: machine learning for static ranking , 2006, WWW '06.