Tractable Lineages on Treelike Instances: Limits and Extensions

Query evaluation on probabilistic databases is generally intractable (#P-hard). Existing dichotomy results have identified which queries are tractable (or safe), and connected them to tractable lineages. In our previous work, using different tools, we showed that query evaluation is linear-time on probabilistic databases for arbitrary monadic second-order queries, if we bound the treewidth of the instance. In this paper, we study limitations and extensions of this result. First, for probabilistic query evaluation, we show that MSO tractability cannot extend beyond bounded treewidth: there are even FO queries that are hard on any efficiently constructible unbounded-treewidth class of graphs. This dichotomy relies on recent polynomial bounds on the extraction of planar graphs as minors, and implies lower bounds in non-probabilistic settings, for query evaluation and match counting in subinstance-closed families. Second, we show how to explain our tractability result in terms of lineage: the lineage of MSO queries on bounded-treewidth instances can be represented as bounded-treewidth circuits, polynomial-size OBDDs, and linear-size d-DNNFs. By contrast, we can strengthen the previous dichotomy to lineages, and show that there are even UCQs with disequalities that have superpolynomial OBDDs on all unbounded-treewidth graph classes; we give a characterization of such queries. Last, we show how bounded-treewidth tractability explains the tractability of the inversion-free safe queries: we can rewrite their input instances to have bounded-treewidth.

[1]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.

[2]  Dan Suciu,et al.  Computing query probability with incidence algebras , 2010, PODS '10.

[3]  Stephan Kreutzer,et al.  Lower Bounds for the Complexity of Monadic Second-Order Logic , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[4]  Peng Zhang,et al.  Computational complexity of counting problems on 3-regular planar graphs , 2007, Theor. Comput. Sci..

[5]  Dan Suciu,et al.  The dichotomy of conjunctive queries on probabilistic structures , 2006, PODS.

[6]  Val Tannen,et al.  Provenance semirings , 2007, PODS.

[7]  Chandra Chekuri,et al.  Polynomial bounds for the grid-minor theorem , 2013, J. ACM.

[8]  Prasoon Goyal,et al.  Probabilistic Databases , 2009, Encyclopedia of Database Systems.

[9]  Venkat Chandrasekaran,et al.  Complexity of Inference in Graphical Models , 2008, UAI.

[10]  Dan Suciu,et al.  Approximate Lifted Inference with Probabilistic Databases , 2014, Proc. VLDB Endow..

[11]  Frank Harary,et al.  Graph Theory , 2016 .

[12]  Martin Otto,et al.  Back and forth between guarded and modal logics , 2002, TOCL.

[13]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[14]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[15]  Adnan Darwiche,et al.  Inference in belief networks: A procedural guide , 1996, Int. J. Approx. Reason..

[16]  Petr Hliněný,et al.  Are There Any Good Digraph Width Measures? , 2010, IPEC.

[17]  Adnan Darwiche,et al.  On the Tractable Counting of Theory Models and its Application to Truth Maintenance and Belief Revision , 2001, J. Appl. Non Class. Logics.

[18]  Omer Reingold,et al.  Finding Collisions in Interactive Protocols - A Tight Lower Bound on the Round Complexity of Statistically-Hiding Commitments , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[19]  Johan Håstad The Shrinkage Exponent of de Morgan Formulas is 2 , 1998, SIAM J. Comput..

[20]  Dániel Marx,et al.  Can you beat treewidth? , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[21]  Johan Kwisthout,et al.  The Necessity of Bounded Treewidth for Efficient Inference in Bayesian Networks , 2010, ECAI.

[22]  Dan Suciu,et al.  Efficient query evaluation on probabilistic databases , 2004, The VLDB Journal.

[23]  A. Amarilli,et al.  Leveraging the structure of uncertain data , 2016 .

[24]  Johann A. Makowsky,et al.  Tree-width and the monadic quantifier hierarchy , 2003, Theor. Comput. Sci..

[25]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[26]  Yehoshua Sagiv,et al.  Running tree automata on probabilistic XML , 2009, PODS.

[27]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[28]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[29]  Jörg Flum,et al.  Query evaluation via tree-decompositions , 2001, JACM.

[30]  Maciej Liskiewicz,et al.  The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes , 2003, Theor. Comput. Sci..

[31]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[32]  Dan Suciu,et al.  On the tractability of query compilation and bounded treewidth , 2012, ICDT '12.

[33]  Petr Hliněný,et al.  Lower bounds on the complexity of MSO1 model-checking , 2014, J. Comput. Syst. Sci..

[34]  Dan Olteanu,et al.  A dichotomy for non-repeating queries with negation in probabilistic databases , 2014, PODS.

[35]  Diego Calvanese,et al.  Decidable containment of recursive queries , 2003, Theor. Comput. Sci..

[36]  Martin Grohe,et al.  Logic, graphs, and algorithms , 2007, Logic and Automata.

[37]  Pierre Senellart,et al.  Provenance Circuits for Trees and Treelike Instances , 2015, ICALP.

[38]  Ingo Wegener,et al.  The Complexity of Symmetric Boolean Functions , 1987, Computation Theory and Logic.

[39]  Martin Grohe,et al.  Algorithmic Meta Theorems , 2008, WG.

[40]  Patrice Ossona de Mendez,et al.  Bounded Height Trees and Tree-Depth , 2012 .

[41]  Diego Calvanese,et al.  Containment of Conjunctive Regular Path Queries with Inverse , 2000, KR.

[42]  Umesh V. Vazirani,et al.  Quantum Algorithms for Hidden Nonlinear Structures , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[43]  B. Mohar,et al.  Graph Minors , 2009 .

[44]  Dániel Marx,et al.  Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries , 2009, JACM.

[45]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[46]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[47]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[48]  Daniel Deutch,et al.  Circuits for Datalog Provenance , 2014, ICDT.

[49]  Bruno Courcelle The monadic second-order logic of graphs XIII: Graph drawings with edge crossings , 2000, Theor. Comput. Sci..

[50]  Johan Hå stad The Shrinkage Exponent of de Morgan Formulas is 2 , 1998 .

[51]  Tomasz Imielinski,et al.  Incomplete Information in Relational Databases , 1984, JACM.

[52]  Dan Olteanu,et al.  Using OBDDs for Efficient Query Evaluation on Probabilistic Databases , 2008, SUM.

[53]  Thomas Wilke,et al.  Logic and automata : history and perspectives , 2007 .

[54]  Dan Suciu,et al.  The dichotomy of probabilistic inference for unions of conjunctive queries , 2012, JACM.

[55]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .