Homogenization of Transport Equations: Weak Mean Field Approximation

We are interested, with respect to the small parameter $\epsilon$, in the behavior of solutions $\rho^\epsilon$ of the conservative advection-diffusion equation $\partial_t\rho^\epsilon + \nabla_x\cdot(\rho^\epsilon u^\epsilon)=\eta\Delta_x\rho^\epsilon$, driven by a large velocity field, $|u^\epsilon|=\mathcal O(1/\epsilon)$, which oscillates periodically with respect to time and space variables. The novelty of our approach compared to that of previous works is that we deal with the periodic case in its full generality. In particular, the cell equation which allows us to compute effective coefficients is parabolic and not elliptic. We also derive estimates on the homogenized solution via entropy methods.

[1]  P. Donato,et al.  An introduction to homogenization , 2000 .

[2]  L. Evans Periodic homogenisation of certain fully nonlinear partial differential equations , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[4]  A. Majda,et al.  SIMPLIFIED MODELS FOR TURBULENT DIFFUSION : THEORY, NUMERICAL MODELLING, AND PHYSICAL PHENOMENA , 1999 .

[5]  Andrew J. Majda,et al.  Mathematical models with exact renormalization for turbulent transport , 1990 .

[6]  G. Allaire Homogenization and two-scale convergence , 1992 .

[7]  Luc Tartar,et al.  Nonlocal Effects Induced by Homogenization , 1989 .

[8]  T. Hou,et al.  Homogenization of linear transport equations with oscillatory vector fields , 1992 .

[9]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[10]  George Papanicolaou,et al.  A limit theorem for turbulent diffusion , 1979 .

[11]  Josselin Garnier,et al.  Homogenization in a Periodic and Time-Dependent Potential , 1997, SIAM J. Appl. Math..

[12]  L. Evans The perturbed test function method for viscosity solutions of nonlinear PDE , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  George Papanicolaou,et al.  Convection of microstructure and related problems , 1985 .

[14]  Homogénéisation d’équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux , 1989 .

[15]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[16]  A. Lejay A probabilistic approach to the homogenization of divergence‐form operators in periodic media , 2001 .

[17]  T. Goudon,et al.  Homogenization and Diffusion Asymptotics of the Linear Boltzmann Equation , 2003 .

[18]  Andrew J. Majda,et al.  An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows , 1991 .

[19]  E. Weinan Homogenization of linear and nonlinear transport equations , 1992 .

[20]  M. Mascarenhas A linear homogenization problem with time dependent coefficient , 1984 .

[21]  Etienne Pardoux,et al.  Homogenization of Linear and Semilinear Second Order Parabolic PDEs with Periodic Coefficients: A Probabilistic Approach☆ , 1999 .

[22]  Y. Amirat,et al.  Some results on homogenization of convection-diffusion equations , 1991 .

[23]  Homogeneisation des modeles de diffusion en neutronique , 1999 .

[24]  Marco Avellaneda,et al.  Scalar transport in compressible flow , 1996, chao-dyn/9612001.

[25]  A. Majda,et al.  Oscillations and concentrations in weak solutions of the incompressible fluid equations , 1987 .

[26]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .