Ag-modification argyrodite electrolytes enable high-performance for all-solid-state lithium metal batteries

[1]  Shijie Cheng,et al.  Achieving high-performance Li6.5Sb0.5Ge0.5S5I-based all-solid-state lithium batteries , 2023, Applied Materials Today.

[2]  Jia Xie,et al.  Sb and O dual doping of Chlorine-rich lithium argyrodite to improve air stability and lithium compatibility for all-solid-state batteries , 2023, Journal of Power Sources.

[3]  Shijie Cheng,et al.  Hunting highly conductive Li6PS5I electrolyte via Sn-Cl dual doping for solid-state batteries , 2023, Scripta Materialia.

[4]  Shijie Cheng,et al.  Synthesis of Br-rich argyrodite electrolytes enables all-solid-state batteries with superior battery performances at different operating temperatures , 2022, Materialia.

[5]  Liquan Chen,et al.  Air Stability of Solid-State Sulfide Batteries and Electrolytes , 2022, Electrochemical Energy Reviews.

[6]  Zhiyan. Wang,et al.  20 μm-Thick Li6.4La3Zr1.4Ta0.6O12-Based Flexible Solid Electrolytes for All-Solid-State Lithium Batteries , 2022, Energy Material Advances.

[7]  T. Brezesinski,et al.  Tailoring the LiNbO 3 coating of Ni-rich cathode materials for stable and high-performance all-solid-state batteries , 2022, Nano Research Energy.

[8]  Yuhao Liang,et al.  High Air Stability and Excellent Li Metal Compatibility of Argyrodite‐Based Electrolyte Enabling Superior All‐Solid‐State Li Metal Batteries , 2022, Advanced Functional Materials.

[9]  Jia Xie,et al.  Revealing milling durations and sintering temperatures on conductivity and battery performances of Li2.25Zr0.75Fe0.25Cl6 electrolyte , 2022, Chinese Chemical Letters.

[10]  Shaorui Sun,et al.  Design Unique Air‐Stable and Li–Metal Compatible Sulfide Electrolyte via Exploration of Anion Functional Units for All‐Solid‐State Lithium–Metal Batteries , 2022, Advanced Functional Materials.

[11]  Chuang Yu,et al.  Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes , 2022, Nature Communications.

[12]  Jia Xie,et al.  Achieving superior ionic conductivity of Li6PS5I via introducing LiCl , 2022, Solid State Ionics.

[13]  Jia Xie,et al.  Engineering high conductive Li7P2S8I via Cl- doping for all-solid-state Li-S batteries workable at different operating temperatures , 2022, Chemical Engineering Journal.

[14]  C. Nan,et al.  Challenges, interface engineering, and processing strategies toward practical sulfide‐based all‐solid‐state lithium batteries , 2022, InfoMat.

[15]  Jia Xie,et al.  Unraveling the crystallinity on battery performances of chlorine-rich argyrodite electrolytes , 2022, Journal of Power Sources.

[16]  Xingyi Huang,et al.  Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries , 2022, Journal of Energy Chemistry.

[17]  S. Cheng,et al.  LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures , 2021 .

[18]  Byung Gon Kim,et al.  In Situ Formed Ag‐Li Intermetallic Layer for Stable Cycling of All‐Solid‐State Lithium Batteries , 2021, Advanced science.

[19]  T. Zhai,et al.  Air Sensitivity and Degradation Evolution of Halide Solid State Electrolytes upon Exposure , 2021, Advanced Functional Materials.

[20]  Jia Xie,et al.  Tuning Solid Interfaces via Varying Electrolyte Distributions Enables High‐Performance Solid‐State Batteries , 2021, ENERGY & ENVIRONMENTAL MATERIALS.

[21]  S. Cheng,et al.  Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability , 2021, Chemical Engineering Journal.

[22]  P. Novák,et al.  Reactivity and Potential Profile across the Electrochemical LiCoO2-Li3PS4 Interface Probed by Operando X-ray Photoelectron Spectroscopy. , 2021, ACS applied materials & interfaces.

[23]  Shijie Cheng,et al.  Improvement of stability and solid-state battery performances of annealed 70Li2S–30P2S5 electrolytes by additives , 2021, Rare Metals.

[24]  Chunsheng Wang,et al.  Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review , 2021, Electrochemical Energy Reviews.

[25]  Ju Li,et al.  Porous Mixed Ionic Electronic Conductor Interlayers for Solid-State Batteries , 2021 .

[26]  Chen‐Zi Zhao,et al.  Critical Current Density in Solid‐State Lithium Metal Batteries: Mechanism, Influences, and Strategies , 2021, Advanced Functional Materials.

[27]  Z. Bakenov,et al.  Improving the cycling stability of three-dimensional nanoporous Ge anode by embedding Ag nanoparticles for high-performance lithium-ion battery. , 2021, Journal of colloid and interface science.

[28]  Gaozhan Liu,et al.  Surface Engineered Li Metal Anode for All‐Solid‐State Lithium Metal Batteries with High Capacity , 2021 .

[29]  K. Ryu,et al.  Structural Investigations, Visualization, and Electrolyte Properties of Silver Halide-Doped Li7P3S11 Lithium Superionic Conductors , 2021 .

[30]  J. Goodenough,et al.  Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries , 2020, Energy Material Advances.

[31]  J. Sann,et al.  Lithium‐Metal Anode Instability of the Superionic Halide Solid Electrolytes and the Implications for Solid‐State Batteries , 2020, Angewandte Chemie.

[32]  Hong-li Ma,et al.  An extremely high rate Li–S battery with hybrid electrolyte , 2020 .

[33]  M. Ge,et al.  Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries , 2020, Nature Communications.

[34]  S. Adams,et al.  Thermal Conductive 2D Boron Nitride for High‐Performance All‐Solid‐State Lithium–Sulfur Batteries , 2020, Advanced science.

[35]  Yulin Ma,et al.  Interface Issues and Challenges in All‐Solid‐State Batteries: Lithium, Sodium, and Beyond , 2020, Advanced materials.

[36]  Renjie Chen,et al.  Cathode-doped sulfide electrolyte strategy for boosting all-solid-state lithium batteries , 2020 .

[37]  Tongchao Liu,et al.  Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage , 2020, Nature Communications.

[38]  I. Han,et al.  High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes , 2020, Nature Energy.

[39]  Qian Sun,et al.  A Versatile Sn‐Substituted Argyrodite Sulfide Electrolyte for All‐Solid‐State Li Metal Batteries , 2020, Advanced Energy Materials.

[40]  Changhong Wang,et al.  Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries , 2019, Energy & Environmental Science.

[41]  Changhong Wang,et al.  H2O-Mediated Synthesis of Superionic Halide Solid Electrolyte. , 2019, Angewandte Chemie.

[42]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[43]  Xiaowei Mu,et al.  A Concentrated Ternary‐Salts Electrolyte for High Reversible Li Metal Battery with Slight Excess Li , 2018, Advanced Energy Materials.

[44]  Kun Fu,et al.  An Electron/Ion Dual‐Conductive Alloy Framework for High‐Rate and High‐Capacity Solid‐State Lithium‐Metal Batteries , 2018, Advanced materials.

[45]  P. Albertus,et al.  Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries , 2017, Nature Energy.

[46]  Wolfgang G. Zeier,et al.  Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes , 2017 .

[47]  T. Leichtweiss,et al.  Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes , 2017 .

[48]  W. Goddard,et al.  Quantum Mechanics Reactive Dynamics Study of Solid Li-Electrode/Li6PS5Cl-Electrolyte Interface , 2017 .

[49]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[50]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[51]  C. Nan,et al.  Oxide Electrolytes for Lithium Batteries , 2015 .

[52]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[53]  S. Ujiie,et al.  Structure, ionic conductivity and electrochemical stability of Li2S–P2S5–LiI glass and glass–ceramic electrolytes , 2012 .

[54]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[55]  Shijie Cheng,et al.  Tuning ionic conductivity to enable all-climate solid-state Li–S batteries with superior performances † , 2021 .

[56]  R. Kanno,et al.  Correlated Li-ion migration in the superionic conductor Li10GeP2S12 , 2021, Journal of Materials Chemistry A.