Free Convolution with a Semicircular Distribution and Eigenvalues of Spiked Deformations of Wigner Matrices

We investigate the asymptotic spectrum of spiked perturbations of Wigner matrices. The entries of the Wigner matrix have a distribution which is symmetric and satisfies a Poincare inequality. The spectral measure of the deterministic Hermitian perturbation matrix converges to some probability measure with compact support. We also assume that this perturbation matrix has a fixed number of fixed eigenvalues (spikes) outside the support of its limiting spectral measure whereas the distance between the other eigenvalues and this support uniformly goes to zero as the dimension goes to infinity. We establish that only a particular subset of the spikes will generate some eigenvalues of the deformed model, which will converge to some limiting points outside the support of the limiting spectral measure. This phenomenon can be fully described in terms of free probability involving the subordination function related to the free additive convolution by a semicircular distribution. Note that only finite rank perturbations had been considered up to now (even in the deformed GUE case).

[1]  Heinz-Günther Tillmann,et al.  Randverteilungen analytischer Funktionen und Distributionen , 1953 .

[2]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[3]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[4]  A. Horn Eigenvalues of sums of Hermitian matrices , 1962 .

[5]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[6]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[7]  Z. D. Bai,et al.  Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .

[8]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[9]  Alexandru Nica,et al.  Free random variables : a noncommutative probability approach to free products with applications to random matrices, operator algebras, and harmonic analysis on free groups , 1992 .

[10]  K. Dykema On Certain Free Product Factors via an Extended Matrix Model , 1992, funct-an/9211011.

[11]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[12]  D. Voiculescu The analogues of entropy and of Fisher's information measure in free probability theory, I , 1993 .

[13]  Boris A. Khoruzhenko,et al.  Asymptotic properties of large random matrices with independent entries , 1996 .

[14]  P. Biane On the free convolution with a semi-circular distribution , 1997 .

[15]  William Fulton,et al.  Eigenvalues of sums of Hermitian matrices [After A. Klyachko] , 1998 .

[16]  Philippe Biane,et al.  Processes with free increments , 1998 .

[17]  J. W. Silverstein,et al.  No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .

[18]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[19]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[20]  J. W. Silverstein,et al.  EXACT SEPARATION OF EIGENVALUES OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES , 1999 .

[21]  Uffe Haagerup,et al.  A new application of random matrices: Ext(C^*_{red}(F_2)) is not a group , 2002 .

[22]  Hanne Schultz Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases. , 2003 .

[23]  L. Pastur,et al.  Matrices aléatoires: Statistique asymptotique des valeurs propres , 2003 .

[24]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[25]  J. W. Silverstein,et al.  Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.

[26]  Arno B.J. Kuijlaars,et al.  Large n Limit of Gaussian Random Matrices with External Source, Part I , 2004 .

[27]  S. Péché The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.

[28]  C. Donati-Martin,et al.  Strong asymptotic freeness for Wigner and Wishart matrices preprint , 2005, math/0504414.

[29]  Arno B.J. Kuijlaars,et al.  Large n Limit of Gaussian Random Matrices with External Source, Part III: Double Scaling Limit , 2006, math-ph/0602064.

[30]  D. Féral,et al.  The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.

[31]  S. Belinschi,et al.  A new approach to subordination results in free probability , 2007 .

[32]  M. Brewer With comments by , 2008 .

[33]  C. Donati-Martin,et al.  The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.

[34]  Raj Rao Nadakuditi,et al.  The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.

[35]  Raj Rao Nadakuditi,et al.  Fundamental Limit of Sample Generalized Eigenvalue Based Detection of Signals in Noise Using Relatively Few Signal-Bearing and Noise-Only Samples , 2009, IEEE Journal of Selected Topics in Signal Processing.

[36]  C. Male The norm of polynomials in large random and deterministic matrices , 2010, 1004.4155.

[37]  A. Guionnet,et al.  Free probability and random matrices , 2012 .

[38]  Jianfeng Yao,et al.  On sample eigenvalues in a generalized spiked population model , 2008, J. Multivar. Anal..