Free Convolution with a Semicircular Distribution and Eigenvalues of Spiked Deformations of Wigner Matrices
暂无分享,去创建一个
[1] Heinz-Günther Tillmann,et al. Randverteilungen analytischer Funktionen und Distributionen , 1953 .
[2] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .
[3] E. Wigner. On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .
[4] A. Horn. Eigenvalues of sums of Hermitian matrices , 1962 .
[5] János Komlós,et al. The eigenvalues of random symmetric matrices , 1981, Comb..
[6] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[7] Z. D. Bai,et al. Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .
[8] D. Voiculescu. Limit laws for Random matrices and free products , 1991 .
[9] Alexandru Nica,et al. Free random variables : a noncommutative probability approach to free products with applications to random matrices, operator algebras, and harmonic analysis on free groups , 1992 .
[10] K. Dykema. On Certain Free Product Factors via an Extended Matrix Model , 1992, funct-an/9211011.
[11] C. Tracy,et al. Introduction to Random Matrices , 1992, hep-th/9210073.
[12] D. Voiculescu. The analogues of entropy and of Fisher's information measure in free probability theory, I , 1993 .
[13] Boris A. Khoruzhenko,et al. Asymptotic properties of large random matrices with independent entries , 1996 .
[14] P. Biane. On the free convolution with a semi-circular distribution , 1997 .
[15] William Fulton,et al. Eigenvalues of sums of Hermitian matrices [After A. Klyachko] , 1998 .
[16] Philippe Biane,et al. Processes with free increments , 1998 .
[17] J. W. Silverstein,et al. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .
[18] S. Bobkov,et al. Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .
[19] Z. Bai. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .
[20] J. W. Silverstein,et al. EXACT SEPARATION OF EIGENVALUES OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES , 1999 .
[21] Uffe Haagerup,et al. A new application of random matrices: Ext(C^*_{red}(F_2)) is not a group , 2002 .
[22] Hanne Schultz. Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases. , 2003 .
[23] L. Pastur,et al. Matrices aléatoires: Statistique asymptotique des valeurs propres , 2003 .
[24] S. Péché,et al. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.
[25] J. W. Silverstein,et al. Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.
[26] Arno B.J. Kuijlaars,et al. Large n Limit of Gaussian Random Matrices with External Source, Part I , 2004 .
[27] S. Péché. The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.
[28] C. Donati-Martin,et al. Strong asymptotic freeness for Wigner and Wishart matrices preprint , 2005, math/0504414.
[29] Arno B.J. Kuijlaars,et al. Large n Limit of Gaussian Random Matrices with External Source, Part III: Double Scaling Limit , 2006, math-ph/0602064.
[30] D. Féral,et al. The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.
[31] S. Belinschi,et al. A new approach to subordination results in free probability , 2007 .
[32] M. Brewer. With comments by , 2008 .
[33] C. Donati-Martin,et al. The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.
[34] Raj Rao Nadakuditi,et al. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.
[35] Raj Rao Nadakuditi,et al. Fundamental Limit of Sample Generalized Eigenvalue Based Detection of Signals in Noise Using Relatively Few Signal-Bearing and Noise-Only Samples , 2009, IEEE Journal of Selected Topics in Signal Processing.
[36] C. Male. The norm of polynomials in large random and deterministic matrices , 2010, 1004.4155.
[37] A. Guionnet,et al. Free probability and random matrices , 2012 .
[38] Jianfeng Yao,et al. On sample eigenvalues in a generalized spiked population model , 2008, J. Multivar. Anal..