Prediction of blood-brain partitioning: a model based on ab initio calculated quantum chemical descriptors.

A new model for the prediction of log BB, a penetration measure through the blood-brain barrier, based on a molecular set of 82 diverse molecules is developed. The majority of the descriptors are derived from quantum chemical ab initio calculations, augmented with a number of classical descriptors. The quantum chemical information enables one to compute fundamental properties of the molecules. The best set of descriptors was selected by sequential selection and multiple linear regression was used to develop the QSAR model. The predictive capability of the model was tested using internal and external test procedures and the domain of applicability was determined to identify reliable predictions. The selected set of descriptors shows a significant correlation with the experimental log BB. The proposed model could reproduce the data with an error approaching the experimental uncertainty and satisfies the available validation procedures. The obtained results indicate that the use of quantum chemical information in describing molecules improves the behavior of the model.

[1]  B Testa,et al.  Predicting blood-brain barrier permeation from three-dimensional molecular structure. , 2000, Journal of medicinal chemistry.

[2]  Michał J. Markuszewski,et al.  Brain/blood distribution described by a combination of partition coefficient and molecular mass , 1996 .

[3]  Gyoergy M. Keserue,et al.  High-Throughput Prediction of Blood-Brain Partitioning: A Thermodynamic Approach , 2001, J. Chem. Inf. Comput. Sci..

[4]  Neil L Allan,et al.  Investigating the utility of momentum-space descriptors for predicting blood-brain barrier penetration. , 2007, Journal of molecular graphics & modelling.

[5]  Drug targeting to the brain. , 2007, Annual review of pharmacology and toxicology.

[6]  J R Chretien,et al.  Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. , 1998, Journal of drug targeting.

[7]  S. Agatonovic-Kustrin,et al.  Prediction of drug transfer into human milk from theoretically derived descriptors. , 2000 .

[8]  Patrick Bultinck,et al.  Fast Calculation of Quantum Chemical Molecular Descriptors from the Electronegativity Equalization Method , 2003, J. Chem. Inf. Comput. Sci..

[9]  Patrick Bultinck,et al.  A new computer program for QSAR‐analysis: ARTE‐QSAR , 2007, J. Comput. Chem..

[10]  D. E. Clark Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. , 1999, Journal of pharmaceutical sciences.

[11]  K. Andries,et al.  Short duration aerosols of JNJ 2408068 (R170591) administered prophylactically or therapeutically protect cotton rats from experimental respiratory syncytial virus infection. , 2003, Antiviral research.

[12]  Michel Waroquier,et al.  The Electronegativity Equalization Method I: Parametrization and Validation for Atomic Charge Calculations , 2002 .

[13]  Andreas Klamt,et al.  Prediction of blood-brain partitioning and human serum albumin binding based on COSMO-RS sigma-moments. , 2007, Journal of chemical information and modeling.

[14]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[15]  Bahram Hemmateenejad,et al.  Accurate prediction of the blood–brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling , 2006, J. Comput. Chem..

[16]  A. Tropsha,et al.  Beware of q 2 , 2002 .

[17]  Bernard Testa,et al.  A simple model to predict blood-brain barrier permeation from 3D molecular fields. , 2002, Biochimica et biophysica acta.

[18]  D. E. Clark,et al.  Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. , 1999, Journal of pharmaceutical sciences.

[19]  Alexander Golbraikh,et al.  Rational selection of training and test sets for the development of validated QSAR models , 2003, J. Comput. Aided Mol. Des..

[20]  P. Selzer,et al.  Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. , 2000, Journal of medicinal chemistry.

[21]  M. Livingston,et al.  Risperidone , 1994, The Lancet.

[22]  F. Holsboer,et al.  Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. , 2000, Journal of psychiatric research.

[23]  F. Lombardo,et al.  Computation of brain-blood partitioning of organic solutes via free energy calculations. , 1996, Journal of medicinal chemistry.

[24]  M. Bradbury The blood-brain barrier. Transport across the cerebral endothelium. , 1985, Circulation research.

[25]  X C Fu,et al.  Predicting blood-brain barrier penetration of drugs using an artificial neural network. , 2004, Die Pharmazie.

[26]  Patrick Bultinck,et al.  Algebraic relationships between conceptual DFT quantities and the electronegativity equalization hardness matrix , 2002 .

[27]  E. Snoeck,et al.  Vorozole, a specific non-steroidal aromatase inhibitor , 2004, Breast Cancer Research and Treatment.

[28]  J. Topliss,et al.  CHANCE FACTORS IN STUDIES OF QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS , 1980 .

[29]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[30]  V. Volpini,et al.  Machado‐Joseph disease, spinopontine atrophy, and SCA3 , 1997, Neurology.

[31]  Denis M. Bayada,et al.  Polar Molecular Surface as a Dominating Determinant for Oral Absorption and Brain Penetration of Drugs , 1999, Pharmaceutical Research.

[32]  S Agatonovic-Kustrin,et al.  Theoretically-derived molecular descriptors important in human intestinal absorption. , 2001, Journal of pharmaceutical and biomedical analysis.

[33]  B. Kay,et al.  Human volunteer studies of Alfentanyl (R39209), a new short‐acting narcotic analgesic , 1980, Anaesthesia.

[34]  Ronald T. Borchardt,et al.  Hydrogen Bonding Potential as a Determinant of the in Vitro and in Situ Blood–Brain Barrier Permeability of Peptides , 1994, Pharmaceutical Research.

[35]  H. Geerts,et al.  Sabeluzole accelerates neurite outgrowth in different neuronal cell lines. , 1992, Restorative neurology and neuroscience.

[36]  M. Karelson,et al.  Quantum-Chemical Descriptors in QSAR/QSPR Studies. , 1996, Chemical reviews.

[37]  Igor V Tetko,et al.  Computing chemistry on the web. , 2005, Drug discovery today.

[38]  Igor V. Tetko,et al.  Virtual Computational Chemistry Laboratory – Design and Description , 2005, J. Comput. Aided Mol. Des..

[39]  Michael C. Hutter,et al.  Prediction of blood–brain barrier permeation using quantum chemically derived information , 2003, J. Comput. Aided Mol. Des..

[40]  D. Winkler,et al.  Rapid prediction of chemical metabolism by human UDP-glucuronosyltransferase isoforms using quantum chemical descriptors derived with the electronegativity equalization method. , 2004, Journal of medicinal chemistry.

[41]  Alan R. Katritzky,et al.  Quantum-Chemical Descriptors in QSAR/QSPR Studies , 1996 .

[42]  S. Deutsch,et al.  Adjuvant galantamine administration improves negative symptoms in a patient with treatment-refractory schizophrenia. , 2002, Clinical neuropharmacology.

[43]  Andreas Klamt,et al.  Prediction of Blood-Βrain Partitioning and Human Serum Albumin Binding Based on COSMO-RS σ-Moments , 2007, J. Chem. Inf. Model..

[44]  Michael H Abraham,et al.  The factors that influence permeation across the blood-brain barrier. , 2004, European journal of medicinal chemistry.

[45]  D. E. Clark In silico prediction of blood-brain barrier permeation. , 2003, Drug discovery today.

[46]  Henry Brem,et al.  Drug Delivery to the Central Nervous System: A Review , 1992 .

[47]  D. Duprez,et al.  Influence of nebivolol on the cardiovascular hemodynamics during postural changes and isometric exercise , 1991, Cardiovascular Drugs and Therapy.

[48]  A. Oza,et al.  Liarozole fumarate (R85246): a novel imidazole in the treatment of receptor positive postmenopausal metastatic breast cancer , 2004, Breast Cancer Research and Treatment.

[49]  U Norinder,et al.  Theoretical calculation and prediction of brain-blood partitioning of organic solutes using MolSurf parametrization and PLS statistics. , 1998, Journal of pharmaceutical sciences.

[50]  Juan M. Luco,et al.  Prediction of the Brain—Blood Distribution of a Large Set of Drugs from Structurally Derived Descriptors Using Partial Least-Squares (PLS) Modeling. , 2010 .

[51]  David W. Salt,et al.  Variable Selection—Spoilt for Choice? , 2005 .

[52]  R Griffiths,et al.  Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. , 1988, Journal of medicinal chemistry.

[53]  Patrick Bultinck,et al.  The Electronegativity Equalization Method II: Applicability of Different Atomic Charge Schemes , 2002 .

[54]  C. Montiel,et al.  Effects of Ca2+ channel antagonist subtypes on mitochondrial Ca2+ transport. , 1995, European journal of pharmacology.

[55]  L. Hall,et al.  Modeling Blood-Brain Barrier Partitioning Using the Electrotopological State. , 2002 .

[56]  M. Kansy,et al.  Hydrogen-Bonding Capacity and Brain Penetration , 1992, Chimia (Basel).

[57]  Akira Tsuji,et al.  Drug delivery through the blood-brain barrier , 1996 .

[58]  Martyn G. Ford,et al.  Unsupervised Forward Selection: A Method for Eliminating Redundant Variables , 2000, J. Chem. Inf. Comput. Sci..

[59]  M. Haine,et al.  Van Damme A. , 1986 .

[60]  Xiaolin Ma,et al.  Predictive model of blood-brain barrier penetration of organic compounds , 2005, Acta Pharmacologica Sinica.

[61]  R. Pauwels,et al.  A TIBO derivative, R82913, is a potent inhibitor of HIV-1 reverse transcriptase with heteropolymer templates. , 1991, Antiviral research.